www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichung mit Beträgen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Ungleichung mit Beträgen
Ungleichung mit Beträgen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung mit Beträgen: Übungsaufgabe aus Ana1
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 20.10.2007
Autor: natschke

Aufgabe
Für welche x [mm] \in [/mm] R gilt:
[mm] ||x-3|+|x+5||\ge4 [/mm]


Ich steh irgendwie auf dem Schlauch...
habe zunächst mit Fallunterscheidungen für die Intervalle x<-5 , [mm] -5\le [/mm] x < 3 und [mm] 3\le [/mm] x gerechnet, dann habe ich das Ganze umgedreht, also versucht x für die Ungleichung
||x-3|+|x+5||<4 zu berechnen, dabei natürlich mit den gleichen Intervallen. Es kommt aber grundsätzlich nichts gescheites raus.
Durch Ausprobieren habe ich auch keine Zahl gefunden, die nicht in die Ungleichung passt, allerdings kann ich das nicht zeigen.
Ich habe dann überlegt, dass ja |x-3|+|x+5|=+/-4 ergeben muss, wobei -4 gar nicht herauskommen kann, heisst das ich kann die äußeren Betragsstriche eigentlich sowieso ignorieren? (Was es momentan aber evt auch nicht leichter macht, das hat mich nur anfangs sehr verwirrt.)
Ich versteh auch nicht, warum ich das nicht lösen kann... Sitze schon seit Tagen davor.
Erste Woche Uni hat wohl ne Blockade verursacht...
Freue mich auf Denkanstöße:-)





        
Bezug
Ungleichung mit Beträgen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:11 Sa 20.10.2007
Autor: leduart

Hallo
> Für welche x [mm]\in[/mm] R gilt:
>  [mm]||x-3|+|x+5||\ge4[/mm]
>  
>
> Ich steh irgendwie auf dem Schlauch...
>  habe zunächst mit Fallunterscheidungen für die Intervalle
> x<-5 , [mm]-5\le[/mm] x < 3 und [mm]3\le[/mm] x gerechnet, dann habe ich das
> Ganze umgedreht, also versucht x für die Ungleichung
> ||x-3|+|x+5||<4 zu berechnen, dabei natürlich mit den
> gleichen Intervallen. Es kommt aber grundsätzlich nichts
> gescheites raus.
> Durch Ausprobieren habe ich auch keine Zahl gefunden, die
> nicht in die Ungleichung passt, allerdings kann ich das
> nicht zeigen.
>  Ich habe dann überlegt, dass ja |x-3|+|x+5|=+/-4 ergeben
> muss, wobei -4 gar nicht herauskommen kann, heisst das ich
> kann die äußeren Betragsstriche eigentlich sowieso
> ignorieren? (Was es momentan aber evt auch nicht leichter
> macht, das hat mich nur anfangs sehr verwirrt.)
>  Ich versteh auch nicht, warum ich das nicht lösen kann...
> Sitze schon seit Tagen davor.
>  Erste Woche Uni hat wohl ne Blockade verursacht...
>  Freue mich auf Denkanstöße:-)

Es ist richtig, dass du die äußeren Betragsstriche einfach weglassen kannst.
2. weil beide Summanden grösser Null sind, verkleinert man das Ergebnis wenn man einen 0 setzt .
also probiert man [mm] |x+5|\le [/mm] 4   folgt -9<x<-1   dann ist [mm] 4\le|x-3|le [/mm] 12  d.h. |x+5|+|x-3| [mm] \ge4 [/mm]  
fertig, denn wenn |x+5| schon >4 dann ist die Summe sicher > 4 also gilt es für alle x.
(genauso hättest du mit |x-3|<4 anfangen können.)
Gruss leduart
  


Bezug
                
Bezug
Ungleichung mit Beträgen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:50 Sa 20.10.2007
Autor: natschke

Danke:-)
Habs nun -endlich- verstanden. Da hätte ich aber auch selbst drauf kommen können/sollen. Naja Brett vorm Kopf...^^
Gruß,
Natschke


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]