www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUngleichung zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis-Sonstiges" - Ungleichung zeigen
Ungleichung zeigen < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Di 01.03.2016
Autor: Piba

Aufgabe
Sei a eine positive reelle Zahl. Zeigen Sie:

$a + [mm] \bruch{1}{a} \ge [/mm] 2$

Guten Abend zusammen,

ich habe versucht die Aufgabe oben zu lösen und bräuchte nun eine Meinung.

$a + [mm] \bruch{1}{a} \ge [/mm] 2 [mm] \gdw \bruch{a}{1} [/mm] + [mm] \bruch{1}{a} \ge [/mm] 2 [mm] \gdw \bruch{a^2 + 1}{a} \ge [/mm] 2 [mm] \gdw a^2 [/mm] + 1 [mm] \ge [/mm] 2a [mm] \gdw a^2 \ge [/mm] 2a - 1$

Hier sieht man, das [mm] $a^2$ [/mm] größer ist als $2n - 1$ reicht das als Lösung oder ist das zu ungenau?

        
Bezug
Ungleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:49 Di 01.03.2016
Autor: M.Rex


> Sei a eine positive reelle Zahl. Zeigen Sie:

>

> [mm]a + \bruch{1}{a} \ge 2[/mm]
> Guten Abend zusammen,

>

> ich habe versucht die Aufgabe oben zu lösen und bräuchte
> nun eine Meinung.

>

> [mm]a + \bruch{1}{a} \ge 2 \gdw \bruch{a}{1} + \bruch{1}{a} \ge 2 \gdw \bruch{a^2 + 1}{a} \ge 2 \gdw a^2 + 1 \ge 2a \gdw a^2 \ge 2a - 1[/mm]

>

> Hier sieht man, das [mm]a^2[/mm] größer ist als [mm]2n - 1[/mm] reicht das
> als Lösung oder ist das zu ungenau?

Mach es dir einfacher:

[mm] a+\frac{1}{a}\ge2 [/mm]
[mm] \Leftrightarrow a-2+\frac{1}{a}\ge0 [/mm]
[mm] \Leftrightarrow \left(\sqrt{a}\right)^{2}-2+\left(\sqrt{\frac{1}{a}}\right)^{2}\ge0 [/mm]
[mm] \Leftrightarrow \left(\sqrt{a}-\sqrt{\frac{1}{a}}\right)^{2}\ge0 [/mm]
[mm] \Leftrightarrow \left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)^{2}\ge0 [/mm]

Nun überlege mal, was du über Quadrate weisst

Marius

Bezug
        
Bezug
Ungleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Di 01.03.2016
Autor: HJKweseleit


> Sei a eine positive reelle Zahl. Zeigen Sie:
>  
> [mm]a + \bruch{1}{a} \ge 2[/mm]
>  Guten Abend zusammen,
>  
> ich habe versucht die Aufgabe oben zu lösen und bräuchte
> nun eine Meinung.
>  
> [mm]a + \bruch{1}{a} \ge 2 \gdw \bruch{a}{1} + \bruch{1}{a} \ge 2 \gdw \bruch{a^2 + 1}{a} \ge 2 \gdw a^2 + 1 \ge 2a [/mm] (hier solltest du noch schreiben: da a>0  - sonst würde sich das [mm] \ge [/mm] -Zeichen umkehren)

[mm] \gdw a^2 \ge [/mm] 2a - 1

>  
> Hier sieht man, das [mm]a^2[/mm] größer ist als [mm]2a - 1[/mm] reicht das
> als Lösung oder ist das zu ungenau?

Es ist besser, man beweist das, denn nicht jeder sieht das. Mach so:

[mm] \gdw a^2 [/mm] - 2a + [mm] 1\ge [/mm] 0
[mm] \gdw [/mm] (a - [mm] 1)^2\ge [/mm] 0


Bezug
        
Bezug
Ungleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 06:18 Mi 02.03.2016
Autor: fred97


> Sei a eine positive reelle Zahl. Zeigen Sie:
>  
> [mm]a + \bruch{1}{a} \ge 2[/mm]
>  Guten Abend zusammen,
>  
> ich habe versucht die Aufgabe oben zu lösen und bräuchte
> nun eine Meinung.
>  
> [mm]a + \bruch{1}{a} \ge 2 \gdw \bruch{a}{1} + \bruch{1}{a} \ge 2 \gdw \bruch{a^2 + 1}{a} \ge 2 \gdw a^2 + 1 \ge 2a \gdw a^2 \ge 2a - 1[/mm]
>  
> Hier sieht man,

Tatsächlich ??



>  das [mm]a^2[/mm] größer ist als [mm]2n - 1[/mm]

......  dass

Du meinst wohl [mm]2a - 1[/mm]


> reicht das
> als Lösung oder ist das zu ungenau?

Mit Verlaub: wenn jemand nicht sieht, dass

   [mm] a^2 \ge [/mm] 2a - 1  gleichbedeutend mit [mm] (a-1)^2 \ge [/mm] 0 ist,

dem kaufe ich nicht ab, dass er Richtigkeit von  [mm] a^2 \ge [/mm] 2a - 1 sieht.

FRED




Bezug
                
Bezug
Ungleichung zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:10 Fr 04.03.2016
Autor: Piba

OK, Danke für eure Hilfe. Ich sehe man darf nicht zu früh aufhören und einfach nur behaupten man sieht das Ergebnis, besser immer mal weiter rechnen bis alles Sichtbar ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]