www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitUngleichung zeigen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Stetigkeit" - Ungleichung zeigen
Ungleichung zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichung zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:08 Do 12.01.2012
Autor: Pia90

Hallo zusammen,

ich benötige nochmal eure Hilfe und zwar soll ich zeigen, dass für alle x [mm] \in \IR [/mm] gilt [mm] |(1+\bruch{x}{n})^n| \le [/mm] exp(|x|).

Irgendwie stehe ich aber im moment total auf dem Schlauch und weiß gar nicht so genau, wie ich anfangen soll...
Aus dem letzten Jahr (was ich allerdings ja nicht verwenden darf), weiß ich, dass [mm] e^x [/mm] der grenzwert von [mm] (1+\bruch{x}{n})^n [/mm] ist... Könnte ich das nicht im Grunde zeigen? Aber dann stört mich immer noch der Betrag...

Würde mich freuen, wenn mir jemand auf die Sprünge helfen könnte!

Viele Grüße!

        
Bezug
Ungleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:03 Do 12.01.2012
Autor: leduart

Hallo
Beweisen kannst du das nur, wenn du irgendeine def von [mm] e^x [/mm] verwendest. a) die exponentialreihe,
b) f'=f mit f(0)=1
[mm] c)e^x=lim [/mm] dein audruck,  dann musst du aber zeigen dass er monoton wächst, der im also die kleinst obere Schranke.
welche def von exp(x) du verwenden darfst hängt von er vorlesung bis jetzt ab.
gruss leduart

Bezug
                
Bezug
Ungleichung zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:20 Do 12.01.2012
Autor: Pia90

Danke erstmal für die schnelle Antwort!!!

> Hallo
>  Beweisen kannst du das nur, wenn du irgendeine def von [mm]e^x[/mm]
> verwendest. a) die exponentialreihe,
>   b) f'=f mit f(0)=1
>  [mm]c)e^x=lim[/mm] dein audruck,  dann musst du aber zeigen dass er
> monoton wächst, der im also die kleinst obere Schranke.
> welche def von exp(x) du verwenden darfst hängt von er
> vorlesung bis jetzt ab.
>  gruss leduart


Möglichkeiten b) und c) fallen denke ich weg und am wahrscheinlichsten muss ich das ganze mit der Exponentialreihe zeigen...

Ich weiß u.a. folgendes:
- exp: [mm] \IR \to \IR [/mm] ist streng monton wachsend
- exp(x) > 0 [mm] \forall [/mm] x [mm] \in \IR [/mm]
- [mm] \forall [/mm] n [mm] \in \IZ: exp(n)=e^n [/mm] mit [mm] e=\limes_{k\rightarrow\infty} (1+\bruch{1}{k})^k [/mm]

Aber ich muss zugeben, dass mich das auch nicht so ganz weiterbringt...

Grade kommt mir aber die Idee, dass ich vielleicht mit der binomischen Formel etwas anfangen könnte... Kann das sein?

Viele Grüße!



Bezug
                        
Bezug
Ungleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:24 Do 12.01.2012
Autor: leduart

Hallo
exponentialreihe und bin. formel sind vielversprechend.
Gruss leduart

Bezug
                                
Bezug
Ungleichung zeigen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Do 12.01.2012
Autor: Pia90

Ok, also ein Vorschlag meinerseits, wär super, wenn mir jemand sagt, ob das so stimmt oder was ich verbessern müsste:

[mm] |(1+\bruch{x}{n})^n| [/mm] = [mm] |\summe_{k=0}^{n} \vektor{x \\ y} (\bruch{x}{n})^k| [/mm] = | [mm] \summe_{k=0}^{n} \bruch{n!}{k!(n-k)!} \cdot (\bruch{x}{n})^k| [/mm] = | [mm] \summe_{k=0}^n \bruch{1}{k!} \cdot \bruch{n(n-1) \cdot ... \cdot (n-k+1) \dot x \cdot x \cdot ... \cdot x}{n \cdot n \cdot ... \cdot n}| \le \summe_{k=0}^{n} \bruch{1}{k!} \cdot [/mm] |x| [mm] \le [/mm] exp(|x|)

Wäre das so korrekt gezeigt?

Bezug
                                        
Bezug
Ungleichung zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:13 Do 12.01.2012
Autor: MathePower

Hallo Pia90,

> Ok, also ein Vorschlag meinerseits, wär super, wenn mir
> jemand sagt, ob das so stimmt oder was ich verbessern
> müsste:
>  
> [mm]|(1+\bruch{x}{n})^n|[/mm] = [mm]|\summe_{k=0}^{n} \vektor{x \\ y} (\bruch{x}{n})^k|[/mm]
> = | [mm]\summe_{k=0}^{n} \bruch{n!}{k!(n-k)!} \cdot (\bruch{x}{n})^k|[/mm]
> = | [mm]\summe_{k=0}^n \bruch{1}{k!} \cdot \bruch{n(n-1) \cdot ... \cdot (n-k+1) \dot x \cdot x \cdot ... \cdot x}{n \cdot n \cdot ... \cdot n}| \le \summe_{k=0}^{n} \bruch{1}{k!} \cdot[/mm]
> |x| [mm]\le[/mm] exp(|x|)
>  


Da fehlen meines Erachtens ein paar Zwischenschritte:

[mm]| \summe_{k=0}^n \bruch{1}{k!} \cdot \bruch{n(n-1) \cdot ... \cdot (n-k+1) \cdot x \cdot x \cdot ... \cdot x}{n \cdot n \cdot ... \cdot n}| \le \summe_{k=0}^n \bruch{1}{k!} \cdot \bruch{n(n-1) \cdot ... \cdot (n-k+1) \cdot }{n \cdot n \cdot ... \cdot n}\vmat{x \cdot x \cdot ... \cdot x}[/mm]

[mm]=\summe_{k=0}^n \bruch{1}{k!} \cdot \bruch{n(n-1) \cdot ... \cdot (n-k+1) \cdot }{n \cdot n \cdot ... \cdot n}\vmat{x^{n}}=\summe_{k=0}^n \bruch{1}{k!} \cdot \bruch{n(n-1) \cdot ... \cdot (n-k+1) \cdot }{n \cdot n \cdot ... \cdot n}\vmat{x}^{n}}\le \summe_{k=0}^{n} \bruch{1}{k!} \cdot \vmat{x}^{n}[/mm]


> Wäre das so korrekt gezeigt?


Gruss
MathePower

Bezug
                                                
Bezug
Ungleichung zeigen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:36 Do 12.01.2012
Autor: Pia90

Vielen Dank!



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]