www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Ungleichungen
Ungleichungen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Tipp, Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:23 Do 06.11.2014
Autor: Nicky-011

Aufgabe
Ermitteln Sie sämtliche Lösungen [mm] x\in\IR [/mm] der folgenden Ungleichung:

[mm] x^{3}-x^{2}< [/mm] 2x

Hallo,
ich habe Probleme diese Aufgabe zu lösen.

ich dachte ich fange erst einmal so an:
[mm] x(x^{2}-x)<2x [/mm]
[mm] x^{2}-x<2 [/mm]
[mm] x^{2}-x-2>0 [/mm]

und dann die p-q Formel und würde dann diese werte für x erhalten:
[mm] x_{1}=0; x_{2}=2,08; x_{3}=-1,08 [/mm] ....

allerdings weiß ich nicht ob ich das so machen darf, und ich habe auch immer Probleme ob bzw wann sich das < zum > wandelt ...

Ich wäre euch sehr Dankbar, wenn mir da jemand helfen könnte!



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:00 Do 06.11.2014
Autor: DieAcht

Hallo Nicky-011 und [willkommenmr]!


> Ermitteln Sie sämtliche Lösungen [mm]x\in\IR[/mm] der folgenden Ungleichung:

Ich sehe hier nur eine Ungleichung.

> [mm]x^{3}-x^{2}<[/mm] 2x

> ich dachte ich fange erst einmal so an:
>  [mm]x(x^{2}-x)<2x[/mm]
>  [mm]x^{2}-x<2[/mm]

Das stimmt nur für alle [mm] $x>0\$ [/mm] (Wieso?).
(Für [mm] $x=0\$ [/mm] würden wir sogar durch Null teilen!)

>  [mm]x^{2}-x-2>0[/mm]

Jetzt bist du durcheinander gekommen. Es ist

      [mm] $x^3-x^2<2x\$ [/mm]

      [mm] $\Longleftrightarrow x(x^2-x)<2x\$. [/mm]

Für [mm] $x=0\$ [/mm] gilt die Ungleichung offenbar nicht.

Für [mm] $x>0\$ [/mm] folgt [mm] $x^{2}-x<2\$ [/mm] und somit folgt?

Für [mm] $x<0\$ [/mm] folgt ... und somit folgt?


Alternativ betrachte

      [mm] $x^3-x^2<2x\$ [/mm]

      [mm] $\Longleftrightarrow f(x):=x^3-x^2-2x<0\$. [/mm]

Die Nullstellen von [mm] $f\$ [/mm] sind gegeben durch [mm] $x=-1\$, $x=0\$ [/mm] und [mm] $x=2\$ [/mm] (Wieso?),
so dass gilt:

      $f(x)=x*(x+1)*(x-2)$.

Betrachte nun [mm] $f(x)<0\$. [/mm]


Gruß
DieAcht

Bezug
                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:38 Do 06.11.2014
Autor: Nicky-011

Für x>0  folgt  [mm] x^{2}-x<2 [/mm] und somit folgt?

             [mm] x^{2}-x-2>0 [/mm]

            und dann mit der p-q Formel [mm] x_{1}=-1,08 [/mm] und [mm] x_{2}=2,08 [/mm]
             Das führt dann im 1.Fall zu [mm] -1,08\le [/mm] x [mm] \le [/mm] 2,08

Für x<0 folgt ... und somit folgt?

            [mm] x^{2}+x-2<0 [/mm]

            -> [mm] x_{1}=+1,08 [/mm] und [mm] x_{2}=-2,08 [/mm] ....
             Das führt dann im 2.Fall zu [mm] -2,08\le [/mm] x [mm] \le [/mm] 1,08

Heißt das jetzt das x werte von [-2,08; 0[ [mm] \cap [/mm] ]0; 2,08]
annehmen kann, oder habe ich da jetzt falsche schlüße gezogen?




Bezug
                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:47 Do 06.11.2014
Autor: fred97


> Für x>0  folgt  [mm]x^{2}-x<2[/mm] und somit folgt?
>  
> [mm]x^{2}-x-2>0[/mm]

Nein. Das führt auf [mm] x^2-x-2<0. [/mm]


>
> und dann mit der p-q Formel [mm]x_{1}=-1,08[/mm] und [mm]x_{2}=2,08[/mm]
>               Das führt dann im 1.Fall zu [mm]-1,08\le[/mm] x [mm]\le[/mm]
> 2,08

Wie kommst Du denn auf dies komischen Zahlen. Die Acht hat Dir doch schon gesagt, dass die Gleichung

    [mm] x^2-x-2=0 [/mm]

die Lösungen [mm] x_1=-1 [/mm] und [mm] x_2=2 [/mm] hat.

Das bedeutet: für x>0 gilt [mm] x^2-x-2<0 [/mm]  genau dann , wenn x<2 ist.

Wir haben also den 1. Teil der gesuchten Lösungsmenge:

     [mm] L_1=]0,2[ [/mm]

>  
> Für x<0 folgt ... und somit folgt?
>  
> [mm]x^{2}+x-2<0[/mm]

Nein. Es folgt [mm]x^{2}+x-2>0[/mm]. Das bedeutet: für x<0 ist [mm] x^2-x-2>0 [/mm] genau dann, wenn x<-1 ist.

2. Teil der Lösungsmenge:

   [mm] $L_2=] [/mm] - [mm] \infty, [/mm] -1[$

FRED

>  
> -> [mm]x_{1}=+1,08[/mm] und [mm]x_{2}=-2,08[/mm] ....
>               Das führt dann im 2.Fall zu [mm]-2,08\le[/mm] x [mm]\le[/mm]
> 1,08
>  
> Heißt das jetzt das x werte von [-2,08; 0[ [mm]\cap[/mm] ]0; 2,08]
>  annehmen kann, oder habe ich da jetzt falsche schlüße
> gezogen?
>  
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]