www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisUngleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Ungleichungen
Ungleichungen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:49 Sa 30.10.2004
Autor: maria

Ich habe ein Problem mit den folgenden Aufgaben. Ich finde einfach keinen Ansatz:

For the following inequalities describe  the set of solutions [mm] x\in \IR [/mm] (as the disjoint union of intervals) Ich übersetze den Satz so: Für die folgenden Ungleichungen beschreibe die Menge der Lösungen...(als die disjunkte Intervallvereinigung). Richtig so ungefähr???

(a)  |x-a| <  [mm] \varepsilon [/mm] with fixed [mm] a,\varepsilon \in \IR [/mm] , [mm] \varepsilon [/mm] > 0;
(b) || x | -2|  [mm] \le [/mm] 1;
(c) 1/x < [mm] 1/(x\pm1) [/mm]

        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 09:05 So 31.10.2004
Autor: Hanno

Hallo Maria!

(a)  |x-a| <  $ [mm] \varepsilon [/mm] $ with fixed $ [mm] a,\varepsilon \in \IR [/mm] $ , $ [mm] \varepsilon [/mm] $ > 0;

Hier solltest du dir die Äquivalenz folgender Aussagen zu Nutze machen:
[mm] $|x|<\varepsilon\gdw -\varepsilon
(b) || x | -2|  $ [mm] \le [/mm] $ 1;

Hier brauchst du nur positive Werte von x zu betrachten und die dort gewonnen Erkenntnisse ins Negative übertragen, da x in Betragstrichen steht, das Vorzeichen also keine Rolle spielt. Fortfahren kannst du dann wie oben.

(c) 1/x < $ [mm] 1/(x\pm1) [/mm] $

Hier würde ich ein paar Fallunterscheidungen durchführen. Ich weiß nicht, ob es nicht noch einfacher geht, aber kompliziert sind die Fallunterscheidungen auch nicht.

Viel Erfolg!

Liebe Grüße,
Hanno




Bezug
        
Bezug
Ungleichungen: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:22 So 31.10.2004
Autor: maria

Danke für die Tips. Ich hoffe ich schaff es jetzt :-) Jedenfalls hast du mich schon ein Stückchen weitergebracht! Danke, danke, danke!!!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]