www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Ungleichungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Analysis des R1" - Ungleichungen
Ungleichungen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:10 Fr 01.02.2013
Autor: zausel1512

Aufgabe
|2x+3|<=5x

Könnte mir mal jemand da ergebnis bestätigen???
Meine Lösung ist eine Leere Menge

        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:16 Fr 01.02.2013
Autor: schachuzipus

Hallo zausel,


> |2x+3|<=5x
>  Könnte mir mal jemand da ergebnis bestätigen???
>  Meine Lösung ist eine Leere Menge

Welche von den vielen leeren Mengen denn ;-)

Spaß beiseite, das ist falsch!

Etwa für $x=1$ gilt doch [mm] $|2x+3|=|2\cdot{}1+3|=5\le 5=5\cdot{}1$ [/mm]

Da musst du wohl vorrechnen, damit wir auf Fehlersuche gehen können ...

Gruß

schachuzipus


Bezug
                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 Fr 01.02.2013
Autor: zausel1512

OK, hier meine Rechnung:

1. Fall   2x+3>=0         -> x>=-3/2
            2x+3<=5x        -> x>= 1

2.Fall    2x+3<0            -> x< -3/2
           -(2x+3)<=5x     -> x>= -7/3
            

Bezug
                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:41 Fr 01.02.2013
Autor: chrisno

Dein Problem hast Du nur, weil Du den Text weg lässt.

> OK, hier meine Rechnung:
>  
> 1. Fall  

um die Betragsstriche weglassen zu können, muss
2x+3>=0         also
x>=-3/2
gelten.
Dann ist die Unlgeichung

>              2x+3<=5x  

erfüllt, wenn  x>= 1

Folgerung: Wenn x>=1 können die Betragsstriche weggelassen werden und die Ungleichung ist erfüllt.
Wo ist da eine leere Menge?

>  
> 2.Fall    2x+3<0            -> x< -3/2
>             -(2x+3)<=5x     -> x>= -7/3

mit entsprechendem Text: hier gibt es kein x.
Das geht aber auch schneller: sobald x negativ ist, kann die Ungleichung nicht erfüllt werden, da 5x dann <0 und auf der anderen Seite etwas >= 0.


Bezug
                                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:50 Fr 01.02.2013
Autor: zausel1512

Hi,
das sind doch genau die beiden Fälle die ich aufgeschrieben hatte.
Ich habe anscheinend nur ein Problem mit dem zusammmenfassen der beiden Einzelmengen.

Bezug
                                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:07 Fr 01.02.2013
Autor: reverend

Hallo Zausel,

>  das sind doch genau die beiden Fälle die ich
> aufgeschrieben hatte.
>  Ich habe anscheinend nur ein Problem mit dem
> zusammmenfassen der beiden Einzelmengen.

Na, dann schreib mal die beiden Einzelmengen ordentlich auf.

Dann nimm dir einen Zahlenstrahl her und markiere diese Mengen.
Die Vereinigung beider Mengen ist die Lösung, nicht ihre Schnittmenge.

Grüße
reverend


Bezug
                                                
Bezug
Ungleichungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:53 Fr 01.02.2013
Autor: zausel1512

Ja, genauso hab ich das gemacht mit dem Zahlenstrahl.
Ist die Vereinigunsmenge: -3/2,-3/7

Bezug
                                                        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 00:41 Sa 02.02.2013
Autor: leduart

Hallo
wo bleiben die positiven x? und welches Intervall meinst du? und
gibt es Zahlen, die kleiner -3/2 und größer als -3/7 sind? wo findest du die auf den Zahlenstrahl? nenne eine davon!
hast du chrisno#s post wirklich gelesen und einen moment darüber nachgedacht?
Gruss leduart

Bezug
                                                                
Bezug
Ungleichungen: Tipp
Status: (Antwort) fertig Status 
Datum: 01:16 Sa 02.02.2013
Autor: kaju35

Hallo Zausel,

das ist doch ziemlich einfach. Die Idee mit der Fallunterscheidung
wurde ja bereits durchdiskutiert. Ich möchte sie dennoch kurz
aufgreifen :

1) Wenn $2x+3>0$ kannst Du die Betragsstriche ohne weiteres
weglassen. Da steht dann [mm] $2x+3\le5x$. [/mm] Nach x aufgelöst gibt
das das Intervall [mm] $\{x\in\mathbb R|x\ge1\}$ [/mm]

2) Wenn $2x+3<0$ kannst Du die Betragsstriche nicht ohne
weiteres weglassen. Das Umdrehen des Vorzeichens auf der
linken Seite hat das Umkehren des Kleinerzeichens zur Folge.
Da steht dann [mm] $-(2x+3)\ge5x$. [/mm] Nach x aufgelöst
gibt das das Intervall [mm] $\{x\in\mathbb R|x\le-\frac{3}{7}\}$ [/mm]

Allerdings : da $x<0$ steht auf der rechten Seite von [mm] $|2x+3|\le5x$ [/mm]
etwas Negatives, während auf der linken Seite naheliegender
Weise etwas Positives oder Null steht. Das letztgenanntes
Intervall fällt also weg.

Gruß
Kai


Bezug
        
Bezug
Ungleichungen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:47 Sa 02.02.2013
Autor: fred97


> |2x+3|<=5x
>  Könnte mir mal jemand da ergebnis bestätigen???
>  Meine Lösung ist eine Leere Menge

Wenn ein x die Ungl. [mm] |2x+3|\le [/mm] 5x erfüllt, so muß gelten x [mm] \ge [/mm] 0, denn |2x+3| [mm] \ge [/mm] 0.

Dann ist aber auch 2x+3 [mm] \ge [/mm] 0.

Damit hat man die Ungl.

      [mm] 2x+3\le [/mm] 5x

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]