www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraUniverselle Eigenschaften
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Algebra" - Universelle Eigenschaften
Universelle Eigenschaften < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Universelle Eigenschaften: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:46 Di 29.06.2010
Autor: physicus

Hallo Zusammen!

Es gibt ja zu mehreren Konzepten in der Algebra universelle Eigenschaften.(Direktes externes Produkt, Freie Gruppe etc.)
Bei vielen habe ich Schwierigkeiten die Eindeutigkeit zu zeigen:
Mein grösstes Problem liegt beim externen direkten Produkt von Gruppen:

Wenn ich eine Gruppe [mm] H [/mm] habe und [mm] \{\phi_k\}_{k=1...n} [/mm] Homomorphismen mit [mm] \phi_k : H \to G_k [/mm] wobei [mm] G_k [/mm] eine Gruppe aus dem externen direkten Produkt ist, dann gibt es genau einen Homomorphismums [mm] \tau : H \to D [/mm] wobei D das externe direkte Produkt der [mm] G_k [/mm]'s ist, so dass [mm] \pi_k\circ \tau = \phi_k [/mm] ist. Der Beweis der Eindeutigkeit von [mm] \tau [/mm] ist mir klar.
Meine Frage bezieht sich darauf: Wieso ist das direkte Produkt durch diese universelle Eigenschaft eindeutig bestimmt? Danke für eure Hilfe!

([mm] \pi_k [/mm] ist die Projektion auf die entsprechende Gruppe)

        
Bezug
Universelle Eigenschaften: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Di 29.06.2010
Autor: andreas

hi

> Wenn ich eine Gruppe [mm]H[/mm] habe und [mm]\{\phi_k\}_{k=1...n}[/mm]
> Homomorphismen mit [mm]\phi_k : H \to G_k[/mm] wobei [mm]G_k[/mm] eine Gruppe
> aus dem externen direkten Produkt ist, dann gibt es genau
> einen Homomorphismums [mm]\tau : H \to D[/mm] wobei D das externe
> direkte Produkt der [mm]G_k [/mm]'s ist, so dass [mm]\pi_k\circ \tau = \phi_k[/mm]
> ist. Der Beweis der Eindeutigkeit von [mm]\tau[/mm] ist mir klar.
>  Meine Frage bezieht sich darauf: Wieso ist das direkte
> Produkt durch diese universelle Eigenschaft eindeutig
> bestimmt? Danke für eure Hilfe!
>  
> ([mm] \pi_k[/mm] ist die Projektion auf die entsprechende Gruppe)

das direkte produkt ist nur bis auf einen (eindeutigen) isomorphismus eindeutig, das folgt aus der universellen eigenschaft:
sei $D'$ mit projekionen [mm] $\pi_k'$ [/mm] ein weiteres direktes produkt. nun gibt es einen eindeutig bestimmten homomorphismus [mm] $\tau: [/mm] D' [mm] \to [/mm] D$ mit [mm] $\pi_k \circ \tau [/mm] = [mm] \pi_k'$ [/mm] nach der universtellen eigenschaft von $D$. entsprechend gibt es ein eindeutiges [mm] $\sigma: [/mm] D [mm] \to [/mm] D'$ mit [mm] $\pi_k' \circ \sigma [/mm] = [mm] \pi_k$ [/mm] (nach der universellen eigenschaft von $D'$) - mal dir am besten mal die entsprechenden diagramme hin, wenn dir das unlar ist, die rolle der "testgruppe" $H$ spielt im ersten fall $D'$, im zweiten fall $D$. nun wendet man noch einal die universelle eigenschaft von $D$ mit "testgruppe" $H = D$ und [mm] $\phi_k [/mm] = [mm] \pi_k$ [/mm] an. offenbar wird das entsprechende diagramm durch [mm] $\mathrm{id}_D$ [/mm] kommutativ ergänzt, aber nach obiger konstruktion kann man nachrechnen, das dies auch durch [mm] $\tau \circ \sigma$ [/mm] geschieht. mit der eindeutigkeit folgt dann ... die andere richtung analog.

ich hoffe das war halbwegs verständlich, ohne die diagramme ist das immer recht schwer zu erklären.

grüße
andreas

Bezug
                
Bezug
Universelle Eigenschaften: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:11 Mi 30.06.2010
Autor: physicus

Super, danke du hast mir sehr geholfen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]