www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenSonstigesUnsinnsbeweise
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Sonstiges" - Unsinnsbeweise
Unsinnsbeweise < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unsinnsbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:23 Do 21.09.2006
Autor: inequality

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Hallo!

Ich kannte mal einige relativ einfache, aber auch kompliziertere Beweise, die offensichtlich Unsinn, wie z.B. 1+1= 3 oder derartiges bewiesen, wo der Fehler allerdings nie offensichtlich war.
Leider kann ich sie nicht mehr finden (weder in meinem Kopf noch in meinen Unterlagen)

Wer kennst diese eund kann mir helfen?

Liebe Grüße,
Julia



        
Bezug
Unsinnsbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 20:21 Do 21.09.2006
Autor: Zwerglein

Hi, inequality,

meinst Du sowas?

[]http://janko.at/Raetsel/Mathematik/004.a.htm

mfG!
Zwerglein

Bezug
        
Bezug
Unsinnsbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:07 Do 21.09.2006
Autor: inequality

Ja, super vielen Dank! Das hilft mir fürs erste schon einmal enorm weiter!
Auch wenn ich jetzt eher an einen mit komplexen Zahlen dachte, wo dann gezeigt wird das -1 = +1 ist.

Kennt möglicherweise auch den jemand?
Danke schonmal im vorraus für eure Mühe..

LG Julia

Bezug
                
Bezug
Unsinnsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:56 Do 21.09.2006
Autor: Zwerglein

Hi, inequality,

tut mir leid: Dazu kenn' ich keinen Link!

mfG!
Zwerglein

Bezug
                
Bezug
Unsinnsbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 22:10 Do 21.09.2006
Autor: chrisno

Hallo Julia,

mit $i = [mm] \sqrt{-1}$ [/mm] kann man, wenn man die Rechenregeln für die Wurzelrechnung im Reellen anwendet, zeigen, dass 1 = -1 folgt. Ich müsste ein wenig suchen, um die Rechnung wiederzufinden. Es geht mit nur drei oder vier Umformungen.
Die Definition [mm] $i^2 [/mm] = -1$ schützt vor solchen Rechnungen. Man muss aber auch darüber nachdenken, ob man die Wurzelrechnung genauso wie im Reellen durchführen darf.

Bezug
        
Bezug
Unsinnsbeweise: Antwort
Status: (Antwort) fertig Status 
Datum: 01:20 Fr 22.09.2006
Autor: unixfan

Also erstmal um mögliche Missverständnisse zu beseitigen: Ein Beweis der mit den "normalen" Axiomen zeigt, dass $-1  = 1$ ist, ist kein Beweis sondern eine Täuschung, weil ein Axiom missachtet wurde.
Aber ich glaube Du meinst folgenden "Beweis":
$-1 = [mm] (\sqrt{-1})^2 [/mm] = [mm] \sqrt{-1} \sqrt{-1} [/mm] = [mm] \sqrt{(-1)(-1)} [/mm] = [mm] \sqrt{1} [/mm] = 1$

Bezug
                
Bezug
Unsinnsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:47 Fr 22.09.2006
Autor: inequality

Vielen Dank!

Genau diesen Täuschungsbeweis habe ich unter anderem gesucht. Danke! Aber auch die anderen zwei haben mir geholfen!
Und natütlich sehe ich ein, das diese Beweise KEINE Beweise sind...

Liebe Grüße,
Julia

Bezug
                        
Bezug
Unsinnsbeweise: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:52 Fr 22.09.2006
Autor: Teufel

Ich habe nur 1=2 und 64=65 ;)
[]Link-Text (wobei man es hier leicht sehen sollte)


[Dateianhang nicht öffentlich]
Und das 2.


-20 = -20
     16-36 = 25-45
16-36+81/4 = 25-45+81/4
[mm] (4-9/2)^2 [/mm] = [mm] (5-9/2)^2 [/mm]    
     4-9/2 = 5-9/2
         4 = 5

Aber mich würde gerne interessieren wo hier der Fehler steckt...


Nur b konnte ich herausfinden.

Dateianhänge:
Anhang Nr. 1 (Typ: gif) [nicht öffentlich]
Bezug
                                
Bezug
Unsinnsbeweise: unterschiedliche Steigungen
Status: (Antwort) fertig Status 
Datum: 21:09 Fr 22.09.2006
Autor: Loddar

Hallo Teufel!


bei dem "umgewandelten Quadrat" wird  mit den einzelnen Steigungen der schrägen Schnitte geschludert, so dass diese gar nicht übereinandergelegt werden können.

Der erste Schnitt hat den Steigungswert [mm] $\bruch{3}{8} [/mm] \ = \ 0.375$ . Bei dem darauffolgenden Schnitt (zwischen "blau" und "orange") beträgt die Steigung aber mehr: nämlich [mm] $\bruch{2}{5} [/mm] \ =  \ 0.40 \ [mm] \not= [/mm] \ 0.375$ .

Damit kann mann die Einzelstücke auch gar nicht mehr wie angegeben zusammensetzen ...


Gruß
Loddar


Bezug
                                        
Bezug
Unsinnsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:28 Fr 22.09.2006
Autor: Teufel

Danke erstmal ;) aber ich meinte diese Umformung eigentlich.

Bezug
                                
Bezug
Unsinnsbeweise: da fehlt ein Betrag
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:41 Fr 22.09.2006
Autor: Loddar

Hallo Teufel!


Bis hierhin ist alles okay ...


> [mm](4-9/2)^2[/mm] = [mm](5-9/2)^2[/mm]    

Aber der nächste korrekte Schritt müsste lauten:

[mm] $\left| \ 4-\bruch{9}{2} \ \right| [/mm] \ = \ [mm] \left| \ 5-\bruch{9}{2} \ \right|$ [/mm]
Also mit Betragsstrichen.

Denn innerhalb der Klammern steht da ja schließlich:

[mm]\left(-\bruch{1}{2}\right)^2 \ = \ \left(+\bruch{1}{2}\right)^2[/mm]    


Nun klar(er)?


Gruß
Loddar


Bezug
                                        
Bezug
Unsinnsbeweise: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:54 Fr 22.09.2006
Autor: Teufel

Aaachso, ja klar :) danke dir!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]