www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitUnstetigkeit im Nullpunkt
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Unstetigkeit im Nullpunkt
Unstetigkeit im Nullpunkt < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unstetigkeit im Nullpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:31 Di 20.04.2010
Autor: gigi

Aufgabe
Untersuche die Funktion f(x,y)= [mm] \begin{cases} 0, & \mbox{für } x*y \mbox{=0} \\ 1, & \mbox{sonst} \end{cases} [/mm]   x,y [mm] \in \IR [/mm]
auf Stetigkeit im Nullpunkt!

HAllo,

ich kann die beiden partiellen Grenzwerte bilden und erhalte 0- f(x,y) ist also stetig bzgl x bzw y.
Insgesamt ist f(x,y) glaub ich im Nullpunkt aber unstetig. Ich weiß nur nicht warum und wie man sich das vielleicht auch anschaulich vorstellen kann!

Herzlichen Dank für jede Hilfe!

        
Bezug
Unstetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Di 20.04.2010
Autor: fred97

1. Betrachte f auf der x-Achse, also f(x,0). Was treibt f für x [mm] \to [/mm] 0 ?

1. Betrachte f auf der 1. Winkelhalbierenden, also f(x,x) ( x [mm] \ne [/mm] 0). Was treibt f für x [mm] \to [/mm] 0 ?

FRED

Bezug
                
Bezug
Unstetigkeit im Nullpunkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:52 Di 20.04.2010
Autor: gigi


> 1. Betrachte f auf der x-Achse, also f(x,0). Was treibt f
> für x [mm]\to[/mm] 0 ?


f geht gegen 0

> 1. Betrachte f auf der 1. Winkelhalbierenden, also f(x,x) (
> x [mm]\ne[/mm] 0). Was treibt f für x [mm]\to[/mm] 0 ?

f geht gegen 1? und weil die gw verschieden sind, ist f nicht stetig im punkt (0,0)?
naja, so richtig sicher bin ich nicht und kann mir wohl die funktion nicht vorstellen

>  
> FRED


danke, gigi

Bezug
                        
Bezug
Unstetigkeit im Nullpunkt: Antwort
Status: (Antwort) fertig Status 
Datum: 16:01 Di 20.04.2010
Autor: fred97


> > 1. Betrachte f auf der x-Achse, also f(x,0). Was treibt f
> > für x [mm]\to[/mm] 0 ?
>  
>
> f geht gegen 0

Ja


>  
> > 1. Betrachte f auf der 1. Winkelhalbierenden, also f(x,x) (
> > x [mm]\ne[/mm] 0). Was treibt f für x [mm]\to[/mm] 0 ?
>  
> f geht gegen 1?

Ja

> und weil die gw verschieden sind, ist f
> nicht stetig im punkt (0,0)?


Ja

>  naja, so richtig sicher bin ich nicht und kann mir wohl
> die funktion nicht vorstellen

Du kannst auch so argumentieren: [mm] $\limes_{x\rightarrow 0}f(x,x) [/mm] = 1 [mm] \ne [/mm] 0=f(0,0)$

FRED

>  >  
> > FRED
>
>
> danke, gigi


Bezug
                                
Bezug
Unstetigkeit im Nullpunkt: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:11 Mi 21.04.2010
Autor: gigi

super, dankesehr!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]