www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStetigkeitUnstetigkeitsstellen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Stetigkeit" - Unstetigkeitsstellen
Unstetigkeitsstellen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unstetigkeitsstellen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:43 Do 17.12.2009
Autor: Stefan-auchLotti

Aufgabe
Bestimmen Sie die Stetigkeitsstellen und die Unstetigkeitsstellen der folgenden Funktionen.

a) [mm] $f:\IR\to\IR,x\mapsto|x|$ [/mm]

b) [mm] $f:\IR\to\IR,x\mapsto\begin{cases} x*\sin\left(\frac{1}{x}\right), & \mbox{falls } x\not=0\\ 0, & \mbox{falls } x=0\end{cases}$ [/mm]

c) [mm] $f:\IR\to\IR,x\mapsto\begin{cases} \frac{\left[|x|\right]}{|x|}, & \mbox{falls } x\not=0\\ 0, & \mbox{falls } x=0\end{cases}$ [/mm]

$[x]$ ist die größte ganze Zahl, die kleinergleich $x$ ist.  

Hallo, Leute,

leider weiß ich, dass das im Prinzip welche der einfachsten Beispiele für Stetigkeit sind, aber unser Kleingruppenleiter hat es aus Zeitgründen überhaupt nicht geschafft, uns darin mal einzuarbeiten.

Ich wär sehr dankbar, wenn ich mir mal die Vorgehensweise erläutern würdet. Meine Ansätze:

a) Per Definition lässt sich der Betrag aufspalten in $x>0$, was $x$ entspricht, $x<0$, was $-x$ entspricht, und $x=0$, wo die Funktion den Wert 0 annimmt. Da Polynome stetig sind, ist die Funktion auf [mm] $x\not=0$ [/mm] stetig. Soweit klar! Jetzt weiß ich aber nicht, wie ich eine Folge konstruieren kann, die mir die Unstetigkeit in $x=0$ zeigt, kann man auch und wenn ja wie mit dem [mm] $\delta -\epsilon-$Kriterium [/mm] ran?

b) Produkt eines Polynoms und Verkettung vom Sinus mit einer rationalen Funktion, die ja stetig auf ihrem Def.-Bereich ist, ist stetig. Somit geht es hier auch nur um $x=0$.

c) [mm] $f:\IR\to\IR,x\mapsto\begin{cases} 0, & \mbox{falls } -1
Hab' die mal umgeschrieben, damit wir sehen, welche Stellen Kandidaten für Unstetigkeit sind.

Also auf $-1<x<1$, insbesondere inklusive $0$, ist die Fkt. das Nullpolynom und somit stetig. Für alle Zahlen [mm] $\notin\IZ$ [/mm] ist es ne rationale Funktion und somit stetig. Verbleiben alle Werte [mm] $\in\IZ$. [/mm]

Vieeelen Dank für Ansätze,

Stefan.

        
Bezug
Unstetigkeitsstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:57 Do 17.12.2009
Autor: fred97


> Bestimmen Sie die Stetigkeitsstellen und die
> Unstetigkeitsstellen der folgenden Funktionen.
>  
> a) [mm]f:\IR\to\IR,x\mapsto|x|[/mm]
>  
> b) [mm]f:\IR\to\IR,x\mapsto\begin{cases} x*\sin\left(\frac{1}{x}\right), & \mbox{falls } x\not=0\\ 0, & \mbox{falls } x=0\end{cases}[/mm]
>  
> c) [mm]f:\IR\to\IR,x\mapsto\begin{cases} \frac{\left[|x|\right]}{|x|}, & \mbox{falls } x\not=0\\ 0, & \mbox{falls } x=0\end{cases}[/mm]
>  
> [mm][x][/mm] ist die größte ganze Zahl, die kleinergleich [mm]x[/mm] ist.
> Hallo, Leute,
>  
> leider weiß ich, dass das im Prinzip welche der
> einfachsten Beispiele für Stetigkeit sind, aber unser
> Kleingruppenleiter hat es aus Zeitgründen überhaupt nicht
> geschafft, uns darin mal einzuarbeiten.
>  
> Ich wär sehr dankbar, wenn ich mir mal die Vorgehensweise
> erläutern würdet. Meine Ansätze:
>  
> a) Per Definition lässt sich der Betrag aufspalten in [mm]x>0[/mm],
> was [mm]x[/mm] entspricht, [mm]x<0[/mm], was [mm]-x[/mm] entspricht, und [mm]x=0[/mm], wo die
> Funktion den Wert 0 annimmt. Da Polynome stetig sind, ist
> die Funktion auf [mm]x\not=0[/mm] stetig. Soweit klar! Jetzt weiß
> ich aber nicht, wie ich eine Folge konstruieren kann, die
> mir die Unstetigkeit in [mm]x=0[/mm] zeigt,


Die Funktion ist in x=0 stetig ! Nimm eine Folge [mm] (x_n) [/mm] mit [mm] x_n \to [/mm] 0. Was macht dann [mm] (f(x_n)) [/mm] = [mm] (|x_n|) [/mm]  ??



> kann man auch und wenn
> ja wie mit dem [mm]\delta -\epsilon-[/mm]Kriterium ran?
>  
> b) Produkt eines Polynoms und Verkettung vom Sinus mit
> einer rationalen Funktion, die ja stetig auf ihrem
> Def.-Bereich ist, ist stetig. Somit geht es hier auch nur
> um [mm]x=0[/mm].


Hier ist $|f(x)| [mm] \le [/mm] |x|$ für jedes x. Also .. ?


FRED



>  
> c) [mm]f:\IR\to\IR,x\mapsto\begin{cases} 0, & \mbox{falls } -1
>  
> Hab' die mal umgeschrieben, damit wir sehen, welche Stellen
> Kandidaten für Unstetigkeit sind.
>  
> Also auf [mm]-1
> Nullpolynom und somit stetig. Für alle Zahlen [mm]\notin\IZ[/mm]
> ist es ne rationale Funktion und somit stetig. Verbleiben
> alle Werte [mm]\in\IZ[/mm].
>  
> Vieeelen Dank für Ansätze,
>  
> Stefan.


Bezug
        
Bezug
Unstetigkeitsstellen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Do 17.12.2009
Autor: leduart

Hallo
a und b sind stetig in 0, [mm] \epsilon \delta [/mm] eignet sich für beide. bei a auch einfach eine beliebige 0 Folge [mm] x_n [/mm]
(Du darst für Stetigkeit keine spezielle nehmen, damit kann man nur Unstetigkeit zeigen)
bei b) dran denken, das [mm] |sin(a)|\le1 [/mm] für alle a.
bei c die einfachste Nullfolge von links und von rechts.zeigt die Unstetigkeit.
Gruss leduart


Bezug
        
Bezug
Unstetigkeitsstellen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:40 Fr 18.12.2009
Autor: Stefan-auchLotti

Ich habs hinbekommen, vielen Dank!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]