Untergruppe von Q < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:44 Do 12.04.2007 | Autor: | Ange |
Hallo,
ich stecke mitten in einem Beweis fest und verstehe einen Teilschritt nicht. Gegeben sei eine Untergruppe der rationalen Zahlen (Q,+). Dabei sei der Index gleich n kleiner unendlich. Warum gilt dann, dass nQ Teilmenge von U ist?
Ich hatte schon versucht zu zeigen, dass jede Untergruppe von Q die Form rQ haben muss, wobei r der Index ist, also |Q:nQ|=r. Bin da aber auch nicht voran gekommen. Hat jemand von euch vielleicht eine Idee?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:27 Do 12.04.2007 | Autor: | felixf |
Hallo,
> ich stecke mitten in einem Beweis fest und verstehe einen
> Teilschritt nicht. Gegeben sei eine Untergruppe der
> rationalen Zahlen (Q,+). Dabei sei der Index gleich n
> kleiner unendlich. Warum gilt dann, dass nQ Teilmenge von U
> ist?
dass der Index gleich $n < [mm] \infty$ [/mm] ist, bedeutet ja gerade, dass $n = [mm] |\IQ/U| [/mm] < [mm] \infty$ [/mm] ist. Nach dem kleinen Satz von Fermat gilt somit $n g = [mm] 0_{\IQ/U}$ [/mm] fuer jedes $g [mm] \in \IQ/U$, [/mm] also insbesondere $n [mm] \cdot \IQ/U [/mm] = [mm] 0_{\IQ/U}$. [/mm] Aber das bedeutet gerade, dass $n [mm] \IQ \subseteq [/mm] U$ ist.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:05 Sa 14.04.2007 | Autor: | Ange |
Ganz lieben Dank für deine Antwort. Musste leider etwas länger darüber nachdenken, macht aber völlig Sinn. Hast mir echt geholfen. Dankeschön :)
|
|
|
|