www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraUntergruppen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Untergruppen
Untergruppen < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untergruppen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:58 Mo 31.01.2011
Autor: Joan2

Aufgabe
Man finde zu jedem Teiler $d$ von $| [mm] S_4 [/mm] |= 24$
eine Untergruppe U < [mm] $S_4$ [/mm] , $| U |$= d.

Die Lösung der Aufgabe soll sein:

d [mm] \in [/mm]  {1,2,3,4,6,8,12,24}

[mm] U_1 [/mm] = {id}
[mm] U_2 [/mm] = {id,(12)}
[mm] U_3 [/mm] = {id,(123),(132)}
[mm] U_4 [/mm] = [mm] V_4 [/mm]
[mm] U_6 [/mm] = {id,(12),(13),(23),(123),(132)}
[mm] U_8 [/mm] = {id,(12),(34),(12)(34),(13)(24),(14)(23),(1423),(1324)}
[mm] U_{12} [/mm] = [mm] A_4 [/mm]
[mm] U_{24} [/mm] = [mm] S_4 [/mm]

Was ich nicht verstehe, ist: warum sind es ausgerechnet diese Untergruppen? Hätte man in [mm] U_8 [/mm] auch nicht (13) nehmen können?

Hilfö? :(


Gruß, Joan



        
Bezug
Untergruppen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:40 Mo 31.01.2011
Autor: felixf

Moin Joan!

> Man finde zu jedem Teiler [mm]d[/mm] von [mm]| S_4 |= 24[/mm]
>  eine
> Untergruppe U < [mm]S_4[/mm] , [mm]| U |[/mm]= d.
>  Die Lösung der Aufgabe soll sein:
>  
> d [mm]\in[/mm]  {1,2,3,4,6,8,12,24}
>  
> [mm]U_1[/mm] = {id}
>  [mm]U_2[/mm] = {id,(12)}
>  [mm]U_3[/mm] = {id,(123),(132)}
>  [mm]U_4[/mm] = [mm]V_4[/mm]
>  [mm]U_6[/mm] = {id,(12),(13),(23),(123),(132)}
>  [mm]U_8[/mm] =
> {id,(12),(34),(12)(34),(13)(24),(14)(23),(1423),(1324)}
>  [mm]U_{12}[/mm] = [mm]A_4[/mm]
>  [mm]U_{24}[/mm] = [mm]S_4[/mm]
>  
> Was ich nicht verstehe, ist: warum sind es ausgerechnet
> diese Untergruppen?

Gegenfrage: warum nicht? Es wurde doch einfach nur nach irgendwelchen Untergruppen dieser Ordnung gefragt.

Du kannst natuerlich auch andere Waehlen. Bei der Aufgabenstellung ist es egal, welche du waelhst, hauptsache sie haben die richtige Ordnung.

> Hätte man in [mm]U_8[/mm] auch nicht (13) nehmen können?

Du meinst $(1 3)$ und $(2 4)$, $(1 3) (2 4)$, ...? Ja, klar, das geht auch.

LG Felix


Bezug
                
Bezug
Untergruppen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:12 Mo 31.01.2011
Autor: Joan2

ah, hab vielen dank ^^

viele grüße
joan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]