www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesUnterkörper und Vektorraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra Sonstiges" - Unterkörper und Vektorraum
Unterkörper und Vektorraum < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterkörper und Vektorraum: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:06 Sa 06.11.2010
Autor: malu90

Aufgabe
Sei L ein Unterkörper von K. Zu Zeigen: [mm] (K,0_{K},+_{K},*) [/mm] mit der Verknüpfung [mm] *:LxK\toK, (\lambda,x)\mapsto \lambda*x [/mm] := [mm] \lambda*_{K}x [/mm] ist ein Vektorraum über L.

Ich weiß nicht wie ich anfangen soll, muss ich zeigen dass L ein Unterkörper von K ist? Und wie gehe ich vor, wenn ich zeigen soll, dass K ein Vektorraum über L ist, muss ich die Axiome eines Vektorraumes nachrechnen, wenn ja muss ich dann nur für "*" nachrechnen oder auch für "+"?
Hilfe...! ^^


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Unterkörper und Vektorraum: Antwort
Status: (Antwort) fertig Status 
Datum: 12:37 Sa 06.11.2010
Autor: Sax

Hi,

> Sei L ein Unterkörper von K. Zu Zeigen: [mm](K,0_{K},+_{K},*)[/mm]
> mit der Verknüpfung [mm]*:LxK\toK, (\lambda,x)\mapsto \lambda*x[/mm]
> := [mm]\lambda*_{K}x[/mm] ist ein Vektorraum über L.

Gemeint ist folgendes :

Gegeben ist ein Körper K = { [mm] \xi, \upsilon, \zeta, [/mm] ...} und ein Unterkörper L von K. K soll jetzt nicht mehr als Körper, sondern als Vektorraum über L aufgefasst werden. Seine Elemente bleiben unverändert aber ihre Rolle ist eine andere, sie werden eben jetzt nicht mehr als "Zahlen" [mm] \xi, \upsilon, \zeta, [/mm] ..., sondern als Vektoren x, y, z angesehen (einschließlich der Elemente von L), L wird weiterhin als Zahlkörper L = { [mm] \lambda, \mu, \nu [/mm] ... } angesehen.
Ein berühmtes Beispiel ist [mm] \IC [/mm] als zweidimensionaler Vektorraum über [mm] \IR. [/mm]
Die Addition der Vektoren x+y bleibt dieselbe, die sie auch als Zahlen war : [mm] \xi+_K\upsilon, [/mm] Analoges gilt für die Skalarmultiplikation [mm] \lambda*x [/mm] = [mm] \lambda*_K\xi. [/mm]


>  Ich weiß nicht wie ich anfangen soll, muss ich zeigen
> dass L ein Unterkörper von K ist?

Nein, das wird ja vorausgesetzt.

> Und wie gehe ich vor,
> wenn ich zeigen soll, dass K ein Vektorraum über L ist,
> muss ich die Axiome eines Vektorraumes nachrechnen, wenn ja
> muss ich dann nur für "*" nachrechnen oder auch für "+"?

Es muss alles nachgewiesen werden, die Überprüfung ist aber so elementar, dass das Wort "nachrechnen" schon fast zu hoch gegriffen ist.

> Hilfe...! ^^
>  
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Gruß Sax.

Bezug
                
Bezug
Unterkörper und Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:14 Sa 06.11.2010
Autor: malu90

Also ich habe jetzt versucht die Voktoraxiome "nachzurechnen".
Bin ich dann damit fertig oder muss ich noch etwas beweisen?

Wie kann ich eigentlich das 4. Axiom beweisen?
4.Axiom: 1*k = k

Bezug
                        
Bezug
Unterkörper und Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:30 Sa 06.11.2010
Autor: Sax

Hi,
also : $ [mm] \underbrace{1}_{\in L} \underbrace{*}_{Skalarmultiplikation} \underbrace{x}_{\in VR\ K} [/mm] = [mm] \underbrace{1}_{\in K} \*_K \underbrace{\xi}_{\in Kp\ K} [/mm] = x $

Gruß Sax.

Bezug
                
Bezug
Unterkörper und Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:16 Sa 06.11.2010
Autor: malu90

ich dachte ich muss dann nur das mit der Verknüpfung * machen, da das ja in dem "zu seigen" steht?!!!!

Bezug
                        
Bezug
Unterkörper und Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Sa 06.11.2010
Autor: Sax

Hi,
das steht dort nicht.
(es wird lediglich die Skalarmultiplikation definiert)
Gruß Sax.

Bezug
                                
Bezug
Unterkörper und Vektorraum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:26 Sa 06.11.2010
Autor: malu90

Hey, weißt du wie ich 1*k=k nachweisen kann?

gruß malu90

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]