www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-SonstigesUntermannigfaltigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis-Sonstiges" - Untermannigfaltigkeit
Untermannigfaltigkeit < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untermannigfaltigkeit: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 14:16 Di 20.11.2012
Autor: quasimo

Aufgabe
Sei M [mm] \subset \IR^n.Fuer [/mm] jedes [mm] x_0 \in [/mm] M existiere eine Umgebung U (in [mm] \IR^n) [/mm] und eine stetig diffbare Abbildung [mm] f=(f_1,.., f_{n-k}) [/mm] : U -> [mm] \IR^{n-k} [/mm] , k <n , mit der Eigenschaft Rang Df = n-k in U, sodass gilt
M [mm] \cap [/mm] U = [mm] \{ x \in U :f_1 (x)=...= f_{n-k} (x) =0 \} [/mm]
Dann ist M eiine Untermannigfaltigkeit.

Der Beweisvon Tafelmitschrift:
Df max Rang -> Quadratische Stück ausschneiden, dass invertierbar ist.  [mm] \exists x_{k+1},..,x_n [/mm] : [mm] D_{(x_{k+1},..,x_n)} f(x_0) [/mm] invertierbar ist.
Der hauptsatz über implizite Funktionen: [mm] \exists [/mm] ( [mm] \phi_{k+1},..,\phi_n) [/mm]
[mm] f_1 =...=f_{n-k}=0 [/mm] <=> [mm] x_{k+1} [/mm] = [mm] \phi_{k+1} (x_1,.., x_k=,.., x_n [/mm] = [mm] \phi_n (x_1,..,x_k) [/mm]

Nun meine Frage:
Auf was wird der Hauptsatz über implizite Funktionen angewendet? Das müssen doch bestimme Vorraisetzungen gelten, wieso gelten diese hier?

        
Bezug
Untermannigfaltigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:10 Mi 21.11.2012
Autor: quasimo

Keiner eine Idee?Oder ist die Frage undeutlich`?
Liebe Grüße

Bezug
        
Bezug
Untermannigfaltigkeit: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:20 Fr 23.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]