www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraUnterräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Unterräume
Unterräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterräume: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 12:57 Mi 16.01.2008
Autor: Ersty

Aufgabe
Sind die Unterräume
[mm] T_{1} [/mm] = [mm] span_{R} (\vektor{2\\3\\0\\0\\1}, \vektor{2\\1\\-4\\0\\3}, \vektor{1\\-1\\-5\\2\\1}) [/mm]
und
[mm] T_{2} [/mm] = [mm] span_{R} (\vektor{3\\2\\-5\\0\\4}, \vektor{2\\-1\\-8\\0\\5}, \vektor{1\\2\\1\\0\\0}) [/mm]
von [mm] R^{5} [/mm] gleich?

Ich verstehe die Aufgabe nicht, kann mir jemand helfen, wie prüfe ich denn, ob die beiden Erzeugnisse gleich sind?
Sind die beiden Unterräume gleich, wenn sie beide die selben Koeffizienten haben, oder wenn sie beide alle Vektoren [mm] \in R^{5} [/mm] erzeugen können?
Vielen Dank!
Ich habe diese Frage in keinem anderen Forum gestellt.

        
Bezug
Unterräume: Antwort
Status: (Antwort) fertig Status 
Datum: 11:40 Do 17.01.2008
Autor: angela.h.b.


> Sind die Unterräume
>  [mm]T_{1}[/mm] = [mm]span_{R} (\vektor{2\\3\\0\\0\\1}, \vektor{2\\1\\-4\\0\\3}, \vektor{1\\-1\\-5\\2\\1})[/mm]
>  
> und
>  [mm]T_{2}[/mm] = [mm]span_{R} (\vektor{3\\2\\-5\\0\\4}, \vektor{2\\-1\\-8\\0\\5}, \vektor{1\\2\\1\\0\\0})[/mm]
>  
> von [mm]R^{5}[/mm] gleich?
>  Ich verstehe die Aufgabe nicht, kann mir jemand helfen,
> wie prüfe ich denn, ob die beiden Erzeugnisse gleich sind?
>  Sind die beiden Unterräume gleich, wenn sie beide die
> selben Koeffizienten haben, oder wenn sie beide alle
> Vektoren [mm]\in R^{5}[/mm] erzeugen können?

Hallo,

letzteres. Wenn dieselben Vektoren drinliegen.

Um das herauszufinden, hast Du diese Möglicheiten - bestimmt gibt es noch mehr:

Entweder Du prüfst, ob sich jeder der erzeugenden Vektoren der zweiten Menge aus denen der ersten linearkombinieren läßt.
Die läuft auf die Lösung dreier LGS heraus, Du kannst sie auch simultan lösen, das mach dann weniger Mühe.

Du bestimmst, indem Du die Vektoren als Zeilen jeweils in eine Matrix legst und vollständig (!!!) den Gaußalgorithmus durchführst, also bis Du führende Einsen mit Nullen darüber hast, jeweils eine Basis und vergleichst.

Gruß v. Angela







>  Vielen Dank!
>  Ich habe diese Frage in keinem anderen Forum gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]