www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterraum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum
Unterraum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:39 Di 08.03.2011
Autor: Mathe-Lily

Aufgabe
Sei V die Menge aller Abbildungen von [mm] \IR [/mm] nach [mm] \IR. [/mm]
Wir definieren:
W:= {f [mm] \in [/mm] V | f(1)=0 und f(-1)=0}.
Zeigen Sie: W ist ein Unterraum von V.

Hallo!
Mir ist schon klar, dass ich hier das Unterraumkriterium anwenden soll, also:
U ist ein Unterraum von V wenn gilt:
- Die Differenz zweier Elemente aus U liegt wieder in U (Abgeschlossenheit bzgl Substraktion).
- Das skalare Vielfache jedes Elements aus U liegt wieder in U (Abgeschlossenheit bzgl skalarer Multiplikation).
- Der Nullvektor liegt in U.

ABER: wie mach ich das hier?
Kann mir da jemand weiter helfen? das wäre toll!


        
Bezug
Unterraum: Antwort
Status: (Antwort) fertig Status 
Datum: 18:49 Di 08.03.2011
Autor: kamaleonti

Guten Abend,
> Sei V die Menge aller Abbildungen von [mm] \IR [/mm] nach [mm] \IR. [/mm]
>  Wir definieren:
>  W:= {f [mm] \in[/mm] [/mm] V | f(1)=0 und f(-1)=0}.
>  Zeigen Sie: W ist ein Unterraum von V.
>  Hallo!
>  Mir ist schon klar, dass ich hier das Unterraumkriterium
> anwenden soll, also:
>  U ist ein Unterraum von V wenn gilt:
>  - Die Differenz zweier Elemente aus U liegt wieder in U
> (Abgeschlossenheit bzgl Substraktion).

Üblicherweise zeigt man die Abgeschlossenheit bzgl Addition

>  - Das skalare Vielfache jedes Elements aus U liegt wieder
> in U (Abgeschlossenheit bzgl skalarer Multiplikation).
>  - Der Nullvektor liegt in U.
>  
> ABER: wie mach ich das hier?
>  Kann mir da jemand weiter helfen? das wäre toll!

Wie sieht denn der Nullvektor [mm] $0\in [/mm] W$ aus?
Es muss gelten f+0=f für alle [mm] f\in [/mm] W.
Für die Abgeschlossenheit nimm dir $f, [mm] g\in [/mm] W$ und [mm] \lambda\in\IR. [/mm]
Zeige dann [mm] $f+g\in [/mm] W$ und [mm] $\lambda f\in [/mm] W$
Einfach mal durchrechnen und auf die entscheidenden Funktionswerte bei 1 und -1 achten!

>  

LG

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]