www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterraum 3-dimensionaler Raum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum 3-dimensionaler Raum
Unterraum 3-dimensionaler Raum < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum 3-dimensionaler Raum: Dreidimensionaler Raum
Status: (Frage) beantwortet Status 
Datum: 22:03 Di 06.05.2008
Autor: babalu

Aufgabe
Hallo kann mir jemand helfen?

Folgende Aufgabe:

A=((x/y/z), x=ay und y=az und a,x,y,z eR ==> man soll angeben für welche Werte von a, A ein Unterraum ist des dreidimensionalen Raumes.

Hat da jemand die Lösung für parat, wär klasse, Danke.


Folgende Aufgabe:

A=((x/y/z), x=ay und y=az und a,x,y,z eR ==> man soll angeben für welche Werte von a, A ein Unterraum ist des dreidimensionalen Raumes.

Hat da jemand die Lösung für parat, wär klasse, Danke.



vielleicht weißt du ja auch noch was der unterschied zwischen dem rang der koeffizientenmatrix und dem rang der erweiterten matrix ist und wie
diese zusammenhängen?

Danke


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.



        
Bezug
Unterraum 3-dimensionaler Raum: Antwort
Status: (Antwort) fertig Status 
Datum: 22:39 Di 06.05.2008
Autor: angela.h.b.


> Hallo kann mir jemand helfen?

> Folgende Aufgabe:
>  
> A=((x/y/z), x=ay und y=az und a,x,y,z eR ==> man soll
> angeben für welche Werte von a, A ein Unterraum ist des
> dreidimensionalen Raumes.

Hallo,

[willkommenmr].

> Hat da jemand die Lösung für parat, wär klasse, Danke.

Bitte lies Dir einmal die Forenregeln durch, der matheraum funktioniert etwas anders: wir erwarten nämlich eigene Lösungsansätze oder konkrete Fragen von Dir.

Hilfreich wäre es auch, würdest Du die Aufgabe im Wortlaut ud nicht als Nacherzählung posten, so wie es jetzt dasteht, ist mir nicht ganz klar, wie die Sache gemeint ist.


> vielleicht weißt du ja auch noch was der unterschied
> zwischen dem rang der koeffizientenmatrix und dem rang der
> erweiterten matrix ist und wie
>  diese zusammenhängen?

Machen wir's mit einem Beipiel.

Wir nehmen das inhomogene LGS

1*x+2*x=5
3*x+4*y=6.

Es ist

[mm] \pmat{ 1 & 2 \\ 3 & 4 } [/mm]  die Koeffizientenmatrix, ihren Rang kannst Du selbst berechnen, und

[mm] \pmat{ 1 & 2& | 5\\ 3 & 4 & | 6} [/mm] ist die erweiterte Koeffizientenmatrix, auch deren Rang kannst Du berechnen.

Der Rang der Koeffizientenmatrix ist kleiner oder gleich dem Rang der erweiterten Koeffizientenmatrix.

Aber vermutlich wolltest Du etwas anderes wissen:

Ist der Rang der erweiterten Matrix gleich dem der Koeffizientenmatrix, so hat das GS eine Lösung, ist der Rang der erweiterten Koeffizientenmatrix größer als der der Koeffizientenmatrix, hat das System keine Lösung.

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]