www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUnterraum beweisen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Unterraum beweisen
Unterraum beweisen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraum beweisen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:46 Mi 17.02.2010
Autor: peeetaaa

Aufgabe
Ist folgende Menge ein Unterraum von V

[mm] V=\IR^3 [/mm]
U={ [mm] \lambda \vektor{1 \\ 2 \\ 5} [/mm] | [mm] \lambda \in \IR} [/mm]

Hallo zusammen,

kann mir vllt jemand an diesem Beispiel zeigen,
wie ich mit  den 3 Unterraumkritieren beweise, dass das ein oder kein Unterraum ist?
Weiß nämlich gar nicht wie ich hier am besten anfange....
danke

        
Bezug
Unterraum beweisen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Mi 17.02.2010
Autor: Pacapear

Hallo!

>  Hallo
> zusammen,
>  
> kann mir vllt jemand an diesem Beispiel zeigen,
>  wie ich mit  den 3 Unterraumkritieren beweise, dass das
> ein oder kein Unterraum ist?
>  Weiß nämlich gar nicht wie ich hier am besten
> anfange....
>  danke  

Ich versuch's mal :-)

Um zu prüfen, ob die Menge [mm] $U=\{ \lambda \vektor{1 \\ 2 \\ 5} |\lambda \in \IR \}$ [/mm] ein Unterraum ist, musst du 3 Bedingungen überprüfen:

Bedingung 1

Ist der Nullvektor [mm] \vektor{0 \\ 0 \\ 0} [/mm] in der Menge U enthalten?

Ja, ist er, nämlich wenn du [mm] \lambda=0 [/mm] wählst.


Bedingung 2

Für zwei Elemente aus U muss auch die Summe dieser Elemente wieder ein Element aus U sein.

Du nimmst also zwei allgemeine Elemente aus U, z.B. [mm] \lambda_1\vektor{1 \\ 2 \\ 5} [/mm] und [mm] \lambda_2\vektor{1 \\ 2 \\ 5}, [/mm] addierst sie, und guckst, ob das Ergebnis auch ein Element aus U ist.


Bedingung 3

Für ein Element aus U muss auch ein beliebiges Vielfaches dieses Elementes wieder ein Element aus U sein.

Du nimmst also ein allgemeines Element aus U, z.B. [mm] \lambda\vektor{1 \\ 2 \\ 5} [/mm] und ein allgemeines Element aus dem Körper,

über dem dein Vektorraum V definiert ist, z.B. a, multiplizierst den Skalar a mit dem Vektor, und guckst, ob das Ergebnis auch ein Element aus U ist.


Hilft dir das ein bisschen weiter?

LG Nadine

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]