www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenUnterraumbestimmung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Abbildungen" - Unterraumbestimmung
Unterraumbestimmung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Unterraumbestimmung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 10:41 So 26.11.2006
Autor: Braunstein

Aufgabe
Welche der folgenden Mengen sind Unterräume des [mm] \IR^{n}? [/mm]

[mm] \{x:x_{1}=0\} \cap \{x:x_{n}=0 \} [/mm]

Hey ihr,

hab soeben dieses Beispiel gerechnet. Mich hat aber die Angabe verwirrt. Bezieht sich der Ausdruck nach dem "UND" auf den selben Vektor oder bezieht sich das auf einen anderen? Ich hab nun folgendes Behauptet:

1) (x+y)-Kriterium:

[mm] \vektor{x_{1} \\ x_{2} \\ . \\ . \\ . \\x_{n-1} \\ x_{n} } [/mm] + [mm] \vektor{y_{1} \\ y_{2} \\ . \\ . \\ . \\y_{n-1} \\y_{n} } [/mm] = [mm] \vektor{x_{1} + y_{1} \\ . \\ . \\ . \\ x_{n} + y_{n} } [/mm]

[mm] \vektor{x_{1} \\ x_{n}} \cap \vektor{y_{1} \\ y_{n}} [/mm] = [mm] \vektor{x_{1}*y_{1} \\ x_{n}*y_{n}} [/mm]

0 * 0 = 0     --> [mm] x_{1}*y_{1} [/mm]
0 * 0 = 0     --> [mm] x_{n}*y_{n} [/mm]

Und somit existiert der Teilraum. Liegt ihr da einer Meinung mit mir, oder nicht? Denn es heißt dann ja:

[mm] \vektor{0 \\ x_{2} \\ . \\ . \\ . \\x_{n_1} \\ 0 } [/mm] + [mm] \vektor{0 \\ y_{2} \\ . \\ . \\ . \\y_{n_1} \\0 } [/mm] = [mm] \vektor{0 + 0 \\ . \\ . \\ . \\ 0 + 0 } [/mm]

        
Bezug
Unterraumbestimmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:11 Di 28.11.2006
Autor: angela.h.b.


> Welche der folgenden Mengen sind Unterräume des [mm]\IR^{n}?[/mm]
>  
> [mm]\{x:x_{1}=0\} \cap \{x:x_{n}=0 \}[/mm]
>  Hey ihr,
>
> hab soeben dieses Beispiel gerechnet. Mich hat aber die
> Angabe verwirrt. Bezieht sich der Ausdruck nach dem "UND"
> auf den selben Vektor oder bezieht sich das auf einen
> anderen?

Hallo,

es ist U:= [mm] \{x:x_{1}=0\} \cap \{x:x_{n}=0 \}=\{x :x_1=0 und x_n=0\}. [/mm]

In Worten: die Vektoren, deren erste und n-te Komponente Null ist.



Ich hab nun folgendes Behauptet:

>
> 1) (x+y)-Kriterium:

Hie mußt Du verwenden, daß erste und n -te Komponente =0 sind, also

[mm]\vektor{0 \\ x_{2} \\ . \\ . \\ . \\x_{n-1} \\ 0 }[/mm] + [mm]\vektor{0 \\ y_{2} \\ . \\ . \\ . \\y_{n-1} \\0}[/mm]  = [mm]\vektor{0 \\ x_2+y_2 \\ ... \\ x_{n-1}+y_{n-1} \\ 0 }[/mm] [mm] \in [/mm] U


Was soll denn das, was ujetzt folgt???

> [mm]\vektor{x_{1} \\ x_{n}} \cap \vektor{y_{1} \\ y_{n}}[/mm] =
> [mm]\vektor{x_{1}*y_{1} \\ x_{n}*y_{n}}[/mm]
>  
> 0 * 0 = 0     --> [mm]x_{1}*y_{1}[/mm]
>  0 * 0 = 0     --> [mm]x_{n}*y_{n}[/mm]

Aha, Vermutlich wolltest Du zeigen, daß für jedes [mm] \alpha \in \IR [/mm] undjedes x [mm] \in [/mm] U gilt [mm] \alpha [/mm] x [mm] \in [/mm] U. (Hal-lo!!!!!!!!!!!!! Die Multiplikation mit Skalaren ist doch nicht das Skalrarprodukt. Wir multiplizieren hier Vektoren mit Zahlen.)
Mach das mal. Es ist einfach, und das Ergebnis liegt drin in U.


> Und somit existiert der Teilraum. Liegt ihr da einer
> Meinung mit mir, oder nicht?

Da "liege" ich einer Meinung mit Dir, auch wenn ich mit Deinem Weg nicht ganz einverstanden bin.

Ein kleines Detail fehlt noch: Bist Du sicher, daß U [mm] \not= \emptyset [/mm] ?

Gruß v. Angela



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]