Unterringe &Ringhomomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:34 Mo 12.11.2007 | Autor: | Tobse |
Aufgabe | Zeigen oder wiederlegen Sie:
Sei R ein kommutativer Ring mit Eins und [mm] S\not=R [/mm] ein Unterring. Dann gibt es keinen surjektiven Ringhomomorphismus S [mm] \to [/mm] R |
Hallo,
das ist meine erste Frage hier. Ich habe mir dazu überlegt, dass das wohl gilt und habe folgenden Beweis:
Sei [mm] \mu: [/mm] S [mm] \to [/mm] R ein Ringhomomorphismus. Da S ein Unterring. von R ist, ist s bezüglich Multiplikation ein Untermonoid von R und enthält damit dasselbe Einselement 1 wie R.
Also gilt für alle s [mm] \in [/mm] S, dass s = s*1 in S und deshalt [mm] \mu(s) [/mm] = [mm] \mu(s*1)
[/mm]
Da [mm] \mu [/mm] ein Ringhomomorphismus ist, ist [mm] \mu [/mm] verträglich mit der Multiplikation, dass heißt die Abbildung [mm] \mu [/mm] ist S-linear und [mm] \mu(1) [/mm] = 1. Somit können wir schließen, dass
[mm] \mu(s) [/mm] = [mm] \mu(s*1) [/mm] = s* [mm] \mu(1) [/mm] = s*1 = s
für alle s [mm] \in [/mm] S. Also ist [mm] Im\mu [/mm] = S.
Wegen [mm] S\subsetR [/mm] und [mm] S\not= [/mm] R gibt es daher ein r [mm] \in [/mm] R mit r [mm] \not\in Im\mu. [/mm] Insbesondere kann [mm] \mu [/mm] nich surjektiv sein.
Jetzt wurde mir allerdings heute gesagt, dass die Aussage nicht stimmt. Kann mir wohl jemand sagen, wo mein Fehler ist?
Schon mal danke im Vorraus!
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:53 Mo 12.11.2007 | Autor: | andreas |
hi
> Sei [mm]\mu:[/mm] S [mm]\to[/mm] R ein Ringhomomorphismus. Da S ein
> Unterring. von R ist, ist s bezüglich Multiplikation ein
> Untermonoid von R und enthält damit dasselbe Einselement 1
> wie R.
> Also gilt für alle s [mm]\in[/mm] S, dass s = s*1 in S und deshalt
> [mm]\mu(s)[/mm] = [mm]\mu(s*1)[/mm]
> Da [mm]\mu[/mm] ein Ringhomomorphismus ist, ist [mm]\mu[/mm] verträglich mit
> der Multiplikation, dass heißt die Abbildung [mm]\mu[/mm] ist
> S-linear und [mm]\mu(1)[/mm] = 1. Somit können wir schließen, dass
> [mm]\mu(s)[/mm] = [mm]\mu(s*1)[/mm] = s* [mm]\mu(1)[/mm] = s*1 = s
> für alle s [mm]\in[/mm] S.
ich denke hier liegt das problem: warum sollte [mm] $\mu$ [/mm] denn $S$-linear sein? [mm] $\mu$ [/mm] ist doch kein $S$-modulhomomorphismus, sondern ein ringhomomorphismus. man kann denke ich nur folgern, dass [mm] $\mu(s) [/mm] = [mm] \mu(s \cdot [/mm] 1) = [mm] \mu(s) \cdot \mu(1) [/mm] = [mm] \mu(s) \cdot [/mm] 1 = [mm] \mu(s)$ [/mm] und das hilft nicht so richtig.
ein konkretes gegenbeispiel habe ich allerdings nicht zur hand. ich könnte mir allerdings vorstellen, dass es etwa für einen körper $K$ mit $R = K[X]$ und $S = [mm] \{f = \sum_{i = 0}^na_i X^i \in R: a_1 = 0 \}$, [/mm] dem unterring der polynome ohne linearem glied, oder ähnlichen konstruktionen funktionieren könnte. diese ringe sind zumindest "groß genug", dass es klappen könnte.
ich wäre auf jeden fall an einem gegenbeispiel interessiert, sofern du eines findest oder eine lösung erhälst.
grüße
andreas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:14 Mo 12.11.2007 | Autor: | andreas |
hi
was unter umständen auch klappen könnte: sei $K = [mm] \mathbb{F}_2$ [/mm] der körper mit zwei elementen, $R = K[X]$ , $S = [mm] \{f = \sum_{i = 0}^n a_iX^i \in R: a_i = 0 \textrm{ für } i \textrm{ ungerade} \}$ [/mm] und [mm] $\nu: [/mm] R [mm] \longrightarrow [/mm] S; \ f [mm] \longmapsto f^2$. [/mm] dann sollte das ein ringisomorphismus sein (?) und [mm] $\mu [/mm] := [mm] \nu^{-1}$ [/mm] das gewünschte leisten.
grüße
andreas
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 01:20 Di 13.11.2007 | Autor: | felixf |
Hallo Andreas
> was unter umständen auch klappen könnte: sei [mm]K = \mathbb{F}_2[/mm]
> der körper mit zwei elementen, [mm]R = K[X][/mm] , [mm]S = \{f = \sum_{i = 0}^n a_iX^i \in R: a_i = 0 \textrm{ für } i \textrm{ ungerade} \}[/mm]
> und [mm]\nu: R \longrightarrow S; \ f \longmapsto f^2[/mm]. dann
> sollte das ein ringisomorphismus sein (?) und [mm]\mu := \nu^{-1}[/mm]
> das gewünschte leisten.
Der tut's.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 10:41 Di 13.11.2007 | Autor: | Tobse |
Super! Danke Schön!
|
|
|
|