www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAbiturvorbereitungUntersuchung zweier Kurven
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Abiturvorbereitung" - Untersuchung zweier Kurven
Untersuchung zweier Kurven < Abivorbereitung < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untersuchung zweier Kurven: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:45 Sa 01.09.2007
Autor: Diva

Aufgabe:

Gegeben:
K1: [mm] x^{2}-2y^{2}-8x+8y=0 [/mm]
K2: [mm] x^{2}+4y^{2}-8x-16y=0 [/mm]

1.1 Was sind das für Kurven?

1.2. Berechnen Sie die Koordinaten allfälliger Schnittpunkte von K1 und K2.

1.3. Wieviele verschiedene Schnittwinkel besitzen K1 und K2? Begründen Sie ihre Antwort!

1.4. Berechnen Sie einen Schnittwinkel von K1 und K2 ?


Die Begründung zu 1.3. fällt mir besonders schwer!

Danke jetzt schon mal fürs helfen!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Untersuchung zweier Kurven: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:17 Sa 01.09.2007
Autor: angela.h.b.


> Aufgabe:
>  
> Gegeben:
>  K1: [mm]x^{2}-2y^{2}-8x+8y=0[/mm]
>  K2: [mm]x^{2}+4y^{2}-8x-16y=0[/mm]
>  
> 1.1 Was sind das für Kurven?
>  
> 1.2. Berechnen Sie die Koordinaten allfälliger
> Schnittpunkte von K1 und K2.
>  
> 1.3. Wieviele verschiedene Schnittwinkel besitzen K1 und
> K2? Begründen Sie ihre Antwort!
>  
> 1.4. Berechnen Sie einen Schnittwinkel von K1 und K2 ?
>  

Hallo,

[willkommenmr].

Du bist ganz neu hier, lies Dir daher bitte einmal die Forenregeln durch.

Insbesondere darauf, daß eigene Lösungsansätze mitgepostet werden, legen wir großen Wert.

>
> Die Begründung zu 1.3. fällt mir besonders schwer!

Daraus schließe ich, daß Du Dir bereits Gedanken gemacht hast. Was hast Du denn bisher herausbekommen?

Wenn es Probleme gibt, schildere, was Du bisher überlegt hast.

> 1.1 Was sind das für Kurven?

Das sieht doch stark nach Kegelschnitten aus.
Welche Kriterien habt Ihr denn gelernt um zuzuordnen, zu welchem Kegelschnitt eine gegebene Gleichung gehört?

Gruß v. Angela



Bezug
                
Bezug
Untersuchung zweier Kurven: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:02 Mo 03.09.2007
Autor: Diva

Oke, also ich hab schon Lösungen erhalten aber ich weiss nicht ob die stimmen!

1.1
K1 ist eine Hyperbel mit M(4/2) [mm] a=\wurzel{8} [/mm] und b=2
K2 ist eine Ellipse mit M(4/2) [mm] a=\wurzel{32} [/mm] und [mm] b=\wurzel{8} [/mm]

1.2
Es gibt also 4 Schnittpunkte die Koordinaten lauten P(0/0), Q(8/0), R(8/4), S(0/4)

1.3
Es gibt meiner Meinung nach 2 verschiedene Winkel [mm] \alpha=71,6° [/mm] oder [mm] \beta=18.4° [/mm]
aber diese Aufgabe macht mir wie schon gesagt besonders Mühe..vorallem die Begründung!
ich vermute es ist wegen der Symmetrien bezuglich M(4/2). ??


Danke !

Bezug
                        
Bezug
Untersuchung zweier Kurven: Antwort
Status: (Antwort) fertig Status 
Datum: 16:22 Mo 03.09.2007
Autor: leduart

Hallo
alles, was du geschrieben hast ist richtig,
aber da die 2 Kegelschnitte denselben Mittelpunkt und damit Symmetrielinien haben x=4 und y=2
sind die 4 Punkte symmetrisch zu diesen Achsen, dann kann sich auch nur ein wesentlicher Schnittwinkel ergeben, der andere ist dazu ein Nebenwinkel, also die Ergänzung zu 180°.
mir fällt auf, dass diene 2 Winkel sich zu 90° ergänzen.
Mach doch ne Skizze der 2 Kegelschnitte, kann ungenau sein, hauptsache die Symmetrie stimmt. dann siehst du, dass an allen 4 Pkten dasselbe passiert, weil man sie einschließlich der Tangenten aufeinander spiegeln kann.
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abiturvorbereitung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]