www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeUntervektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Untervektorräume
Untervektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Untervektorräume: Spann des R^3
Status: (Frage) beantwortet Status 
Datum: 14:20 Di 29.11.2011
Autor: Domme

Aufgabe
Sei U der Untervektorraum U von [mm] R^3, [/mm] der die beiden Vektoren v:=(1,-1,1) und w:= (2,2,0) enthält, so dass jeder Untervektorraum von [mm] R^3, [/mm] der v und w enthält, auch alle Vektoren von U enthält.

1.) Beschreiben Sie mit Hilfe geeigneter Linearkombinationen die Vektoren von U.
2.) Beweisen Sie, dass v,w und (1,1,1) den [mm] R^3 [/mm] aufspannen.

Zu 1.) kann ich leider nichts sagen weil ich gerade keine Ahnung habe, wie ich das schreiben soll.

Zu 2.) Ich weiß ja schon das (1,1,1) nicht in U enthalten ist, oder mache ich da gerde einen denkfehler? Leider kann ich mit der Informationen nicht mehr weiter was anfangen und sitze damit in der "Sackgasse".

        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 14:37 Di 29.11.2011
Autor: fred97


> Sei U der Untervektorraum U von [mm]R^3,[/mm] der die beiden
> Vektoren v:=(1,-1,1) und w:= (2,2,0) enthält, so dass
> jeder Untervektorraum von [mm]R^3,[/mm] der v und w enthält, auch
> alle Vektoren von U enthält.
>  
> 1.) Beschreiben Sie mit Hilfe geeigneter
> Linearkombinationen die Vektoren von U.
>  2.) Beweisen Sie, dass v,w und (1,1,1) den [mm]R^3[/mm]
> aufspannen.
>  Zu 1.) kann ich leider nichts sagen weil ich gerade keine
> Ahnung habe, wie ich das schreiben soll.


Ich habs auch zweimal lesen müssen, bis mir klar wurde, was gemeint ist.


Es gilt also:

v,w [mm] \in [/mm] U

und

ist V ein Untervektorraum des [mm] \IR^3 [/mm] mit v,w [mm] \in [/mm] V , ist U [mm] \subseteq [/mm] V.

Damit ist U der kleinste Untervektorraum , der v und w enthält. Folglich besteht U gerade aus den Linearkombinationen von v und w:

                [mm] U=\{rv+sw: r,s \in \IR\} [/mm]

>  
> Zu 2.) Ich weiß ja schon das (1,1,1) nicht in U enthalten
> ist, oder mache ich da gerde einen denkfehler?

Nein

>  Leider kann
> ich mit der Informationen nicht mehr weiter was anfangen
> und sitze damit in der "Sackgasse".

Zeige: v,w und (1,1,1) sind linear unabhängig.

FRED


Bezug
                
Bezug
Untervektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:04 Di 29.11.2011
Autor: Domme

zu 2.) habe das jetzt einmal nachgerechnet und da die Determinante D=4 ist (stimmt´s?) sind v,w und (1,1,1) linear unabhängig und d.h. sie spannen [mm] \IR³ [/mm] auf!
Stimmt das?

Bezug
                        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Di 29.11.2011
Autor: fred97


> zu 2.) habe das jetzt einmal nachgerechnet und da die
> Determinante D=4 ist (stimmt´s?)

Ja

>  sind v,w und (1,1,1)
> linear unabhängig und d.h. sie spannen [mm]\IR³[/mm] auf!
> Stimmt das?

Ja

FRED


Bezug
                        
Bezug
Untervektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 15:16 Di 29.11.2011
Autor: leduart

Hallo
ja stimmt, wenn ihr gezeigt habt, dass det=0 bedeutet, dass a*v+b*w+c*x=0 nur die lösung a=b=c=0 hat, wenn die det aus v,w,x 0 ist.
Gruss leduart

Bezug
                                
Bezug
Untervektorräume: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:30 Di 29.11.2011
Autor: Domme

Vielen Dank für die schnellen Antworten.
Das hat mir sehr geholfen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]