www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Analysis-InduktionVI Summe n über k
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Analysis-Induktion" - VI Summe n über k
VI Summe n über k < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

VI Summe n über k: Ich hab da ein Problem
Status: (Frage) beantwortet Status 
Datum: 16:33 Mi 07.11.2007
Autor: bbuttler

Aufgabe
Beweise mit Hilfe der Vollständigen Induktion

[mm] \summe_{i=1}^{n} [/mm] (i+1) * [mm] \vektor{n \\ i} [/mm] = 2^(n-1) * (n+2) - 1

Ich hab da ein etwas größeres Problem und zwar
hab ich folgende gleichung:
[mm] \summe_{i=1}^{n} [/mm] (i+1) * [mm] \vektor{n \\ i} [/mm] = 2^(n-1) * (n+2) - 1

Und soll das ganze nun mit HIlfe der Vollständigen Induktion beweisen
Allerdings scheitere ich schon daran das Folge element der Summe zu berechnen...

Wir haben es auch schon von der anderen Seite her probiert, allerdings fehlt uns einfach die auflösung von

[mm] \summe_{i=1}^{n+1} [/mm] (i+1) * [mm] \vektor{2 \\ i} [/mm]



Also was passiert wenn die summe anstatt bis n nun bis n+1 geht...
Wer genial wenn mir da jemand weiter helfen könnte...
MFG
Björn

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
VI Summe n über k: Summe für n+1
Status: (Antwort) fertig Status 
Datum: 17:31 Mi 07.11.2007
Autor: Loddar

Hallo Björn,

[willkommenmr] !!


[mm] $$\summe_{i=1}^{n+1}\left[(i+1)*\vektor{\red{n+1} \\ i}\right] [/mm] \ = \ [mm] \summe_{i=1}^{n}\left[(i+1)*\vektor{n+1 \\ i}\right]+(n+1+1)*\vektor{n+1 \\ n+1} [/mm] \ = \ [mm] \summe_{i=1}^{n}\left[(i+1)*\vektor{n+1 \\ i}\right]+(n+2)*1 [/mm] \ = \ ...$$

Nun den verbleibenden Binomialkoeffizienten zerlegen gemäß:  [mm] $\vektor{n+1\\i} [/mm] \ = \ [mm] \vektor{n\\i-1}+\vektor{n\\i}$ [/mm] .


Gruß
Loddar


Bezug
        
Bezug
VI Summe n über k: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 13:57 Do 08.11.2007
Autor: X-Metal

Hallo Ihr beiden,

ich sthe gerade vor demselben problem bei der gleichen Aufgabe.

Könntet Ihr Eure Induktion bitte einmal komplett ins Netz hier stellen??

Danke und Gruss,
X-Metal

Bezug
                
Bezug
VI Summe n über k: Forenregeln
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:05 Do 08.11.2007
Autor: Loddar

Hallo X-Metal,

[willkommenmr] !!


> Könntet Ihr Eure Induktion bitte einmal komplett ins Netz
> hier stellen??

Das entspricht aber nicht unseren Forenregeln und dem Selbstverständnis dieses Forums.

Bitte poste doch Deine eigenen Lösungsansätze, und dann können wir das gemeinsam durchgehen ... wie weit bist Du denn mit o.g. Tipps gekommen?


Gruß
Loddar


Bezug
                        
Bezug
VI Summe n über k: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:08 Do 08.11.2007
Autor: X-Metal

Hallo,

ich weiss bei dieser Aufageb ganz ehrlich gesagt nicht, wo ich da anfangen soll. Ich bekomme nicht mal den Beweis für die Induktionsvorraussetzung hin.

Genau da liegt mein Problem, ich kann hier leider keinen Lösungsansatz oder ähnliches ins Netz stellen, da ich keinen habe.

Gruss,
X-Metal

Bezug
                                
Bezug
VI Summe n über k: Tip
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:36 Do 08.11.2007
Autor: angela.h.b.


> ich weiss bei dieser Aufageb ganz ehrlich gesagt nicht, wo
> ich da anfangen soll.

Hallo,

wenn Du gar keinen Anfang findest, könnte es sein, daß Du das Prinzip der vollständigen MBInduktion nicht verstanden hast, welches Du an der verlinkten Stelle nachlesen kannst.

Gruß v. Angela

Bezug
                                        
Bezug
VI Summe n über k: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:56 Do 08.11.2007
Autor: X-Metal

Mist, da ich neu hier bin habe ich die frage an die falsche Stelle gestellt. Der Übersichtlichkeit halber stelle ich sie hier nochmal, die Admins mögen mir verzeihen.


Also ich bin jetzt bis zu dem Punkt gekommen, an dem ich folgendes habe:

$ [mm] =2^{n-1}(n+2)-1+\summe_{j=0}^{n}((j+1)+1)\vektor{n \\ j}- (n+1+1)\vektor{n \\ n}+(n+2) [/mm] $

Ich komme hier aber nicht weiter, die endgültige Zerlegung der Binomialkoffizienten nach dem Tip von Loddar oben bekomme ich nicht hin. Ich weiss auch, dass wir einbauen sollen, dass

$ [mm] \summe_{j=0}^{n}{\vektor{n \\ j} } [/mm] = [mm] 2^n [/mm] $

ist, das ist ein Tip auf unserem Übungsblatt.

Ich weiss nicht, wie ich nachher zeige, dass die rechte Seite der Gleichung gleich der linken ist, aus gegangen von

$ [mm] \summe_{j=1}^{n}{(j+1) \cdot \vektor{n \\ j}} [/mm] =  [mm] 2^{n-1}(n+2)-1 [/mm] $

Kann mir einer von Euch beim Ende helfen?? Bitte

Bezug
                                                
Bezug
VI Summe n über k: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Do 08.11.2007
Autor: angela.h.b.


> Also ich bin jetzt bis zu dem Punkt gekommen, an dem ich
> folgendes habe:
>  
> [mm]=2^{n-1}(n+2)-1+\summe_{j=0}^{n}((j+1)+1)\vektor{n \\ j}- (n+1+1)\vektor{n \\ n}+(n+2)[/mm]
>  
> Ich komme hier aber nicht weiter,

Hallo,

das wundert mich eigentlich, denn die Art, wie Du oben geklammert hast, deutet daraufhin, daß Du schon einen ganz bestimmten Plan hast.

Den mußt Du nun noch zum Ende durchziehen.
Löse die Summen in zwei Summen auf, das ist ja bestens vorbereitet, und das war's dann ja auch fast - bis auf Kleinigkeiten wie Induktionsvoraussetzung einsetzen und den Tip verwenden.

Gruß v. Angela



Bezug
                                                        
Bezug
VI Summe n über k: Tip einsetzen
Status: (Frage) beantwortet Status 
Datum: 18:18 Do 08.11.2007
Autor: X-Metal

Hallo Angela,

also wenn ich mir den Tip ansehe und den Rest rausschmeisse bin auf das blanke [mm] 2^n, [/mm] habe ich da immer noch einen Riesenterm, in dem ich mich aber verrenne.

Ich weiss halt nicht weiter, denn der Schluss an dem ich zeige, dass die Gleichung auch für n+1 gilt, bleibt mir verschlossen. Ich bekomme die linke Seite einfach nicht so hin wie die rechte Seite.

Bezug
                                                                
Bezug
VI Summe n über k: Antwort
Status: (Antwort) fertig Status 
Datum: 18:28 Do 08.11.2007
Autor: angela.h.b.


> also wenn ich mir den Tip ansehe und den Rest rausschmeisse
> bin auf das blanke [mm]2^n,[/mm] habe ich da immer noch einen
> Riesenterm, in dem ich mich aber verrenne.

Hallo,

meine Fantasie reicht nicht mir vorzustellen, was Du tust.
Du mußt schon zeigen, was Du machst.
Du mußt nun erstmal in der Summe bedenken, daß [mm] \summe((a+b)c)=\summe(ac+bc)=\summeac [/mm] + [mm] \summebc. [/mm]

>  
> Ich weiss halt nicht weiter, denn der Schluss an dem ich
> zeige, dass die Gleichung auch für n+1 gilt, bleibt mir
> verschlossen.

Ja, so wie es jetzt dasteht, ist das schon klar, aber wenn Du das so machst, wie ich gesagt habe, HAST Du am Ende dastehen, was dastehen soll.

Gruß v. Angela





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]