www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVR der Polynome, Abb. als Matr
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - VR der Polynome, Abb. als Matr
VR der Polynome, Abb. als Matr < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

VR der Polynome, Abb. als Matr: Abbildungsmatrix
Status: (Frage) beantwortet Status 
Datum: 12:02 Mi 18.05.2005
Autor: baddi

Hi all :)
Ich habe hier eine Aufgabe, die für Euch sicher trivial ist... aber ich blick gleich nicht recht durch.

Gegeben:
Ein VR aller Polynome mir reeelen Koeffizienten mit Grad < 6
Kurz: V = {p [mm] \in \IR [/mm] | deg p <6 }

Und eine Abbildung F:  V -> V die Shift- Abbildung (Fp)(t) = p(t+1)

Gesucht:
Matrixdarstellung von F btgl. Basis {1, t, .... , [mm] t^5} [/mm]

Hier meine Fragen:
Jemand hatte die Lösung abgeschrieben ohne Sie zu verstehen und meinte
F(1) = 1.
Aber warum?
Entspricht nicht F(1) = p( 1 + 1 ) ??
Also einem Ausdruck mit 5 Koeefizienten ... einem Polynom ?
Genauer: [mm] p_0 [/mm] * ( 1 + 1 [mm] )^0 [/mm] + ... + [mm] p_5 [/mm] * ( 1 + 1 [mm] )^5 [/mm]

Danke und Gruß :)

        
Bezug
VR der Polynome, Abb. als Matr: Antwort
Status: (Antwort) fertig Status 
Datum: 13:25 Mi 18.05.2005
Autor: Julius

Hallo Sebastian!

> Gegeben:
>  Ein VR aller Polynome mir reeelen Koeffizienten mit Grad <  6
>  Kurz: [mm]V = \{p \in \IR | deg p <6 \}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)


>  
> Und eine Abbildung F:  V -> V die Shift- Abbildung (Fp)(t)
> = p(t+1)
>  
> Gesucht:
>  Matrixdarstellung von F btgl. Basis {1, t, .... , [mm]t^5}[/mm]
>  
> Hier meine Fragen:
>  Jemand hatte die Lösung abgeschrieben ohne Sie zu
> verstehen und meinte
>  F(1) = 1.
>  Aber warum?
>  Entspricht nicht F(1) = p( 1 + 1 ) ??

Nein. Durch $F$ wird ja ein Polynom auf ein (geshiftetes) Polynom abgebildet.

Hier ist $1$ das Einspolynom, also: $p(t)=1$. Fasse ich dies als Polynomfunktion auf, so ist es einfach die konstante Einsfunktion. Ich bezeichne es im Folgenden mal mit [mm] $\mathbb{I}$, [/mm] damit es zu keiner Verwechslung mit der reellen Zahl $1$ kommt.

Nun soll [mm] $F(\mathbb{I})$ [/mm] wieder ein Polynom sein (oder eine Funktion, wenn man es als Polynomfunktion [mm] $F(\mathbb{I}):\IR \to \IR$ [/mm] auffasst). Genauer gesagt gilt nach Definition:

[mm] $[F(\mathbb{I})](t) [/mm] = [mm] \mathbb{I}(t+1)$. [/mm]

Aber das konstante Einspolynom bleibt das konstante Einspolynom, auch wenn man es shiftet. Stelle dir die konstante Einsfunktion vor. Die Funktionswerte bleiben gleich eins, auch wenn ich nicht $t$, sondern $t+1$ einsetze!

Daher gilt:

[mm] $[F(\mathbb{I})](t) [/mm] = [mm] \mathbb{I}(t+1) [/mm] = 1 = [mm] \mathbb{I}(t)$. [/mm]

Wir haben also:

[mm] $F(\mathbb{I}) [/mm] = [mm] \mathbb{I}$. [/mm]

(Ihr hattet das als $F(1)=1$ geschrieben.)

Klar? :-)

Viele Grüße
Julius


Bezug
                
Bezug
VR der Polynome, Abb. als Matr: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Mi 18.05.2005
Autor: baddi

Hi Julius,

> Nein. Durch [mm]F[/mm] wird ja ein Polynom auf ein (geshiftetes)
> Polynom abgebildet.

Das verstehe ich anscheinend wohl noch nicht recht:
F:  V -> V die Shift- Abbildung (Fp)(t) = p(t+1)
Was heißt denn z.B. Fp ? Ist dass nur ein Name für eine Funktion,
oder heißt das F * p ?
Und heißt F * p komponentenweise Multiplikation ?

> Hier ist [mm]1[/mm] das Einspolynom, also: [mm]p(t)=1[/mm].

Heißt dann (?):
[mm] 1*t^0 [/mm] + ... + [mm] 1*t^5 [/mm]
Aber ich dachte, dass wäre p(1) ?
Blick gerade gar nicht durch ;-(

Danke :-) Sebastian  


Bezug
                        
Bezug
VR der Polynome, Abb. als Matr: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Mi 18.05.2005
Autor: Julius

Hallo Sebastian

$F(p)$ ist der Name für ein neues Polynom, dass so gebildet wird:

Nehme das alte Polynom $p$ und setze statt $t$ einfach $t+1$ ein.

Es gilt für das Einspolynom:

[mm] $\mathbb{I}(t) [/mm] = 1 [mm] \cdot t^0 [/mm] + 0 [mm] \cdot t^1 [/mm] + 0 [mm] \cdot t^2 [/mm] + 0 [mm] \cdot t^3 [/mm] + 0 [mm] \cdot t^4 [/mm] + 0 [mm] \cdot t^5$. [/mm]

Jetzt klarer? :-)

Viele Grüße
Julius

Bezug
                                
Bezug
VR der Polynome, Abb. als Matr: Fp(1)
Status: (Frage) beantwortet Status 
Datum: 15:10 Mi 18.05.2005
Autor: baddi

Hallo Julius :)
> [mm]F(p)[/mm] ist der Name für ein neues Polynom

Oha :) Wurde bei uns übrigens Fp geschrieben.
Wird wohl keinen Unterschied machen.

>, dass so gebildet wird: ... setze statt [mm]t[/mm] einfach [mm]t+1[/mm]
So war auch meine erste Interpretation.
Dann ist also
Fp(1) = [mm] p_0 [/mm] * [mm] 1^0 [/mm] + ... + [mm] p_5 [/mm] * [mm] 1^5 [/mm] = [mm] p_0 [/mm] + ... + [mm] p_5 [/mm]
Richtig ?

> Es gilt für das Einspolynom:
> [mm]\mathbb{I}(t) = 1 \cdot t^0 + 0 \cdot t^1 + 0 \cdot t^2 + 0 \cdot t^3 + 0 \cdot t^4 + 0 \cdot t^5[/mm].

Das Einspolynom ist also einfach die Darstellung der Zahl 1 als Polynom?
Warum einfach, wenns auch kompliziert geht ;)... Wozu das wieder gut sein soll. Tztztztz ;)

> Jetzt klarer? :-)

Immerhin dass ;) Ich hoffe.

Viele Grüße
Sebastian


Bezug
                                        
Bezug
VR der Polynome, Abb. als Matr: Antwort
Status: (Antwort) fertig Status 
Datum: 16:17 Mi 18.05.2005
Autor: Julius

Hallo Sebastian!

>  > [mm]F(p)[/mm] ist der Name für ein neues Polynom

>  Oha :) Wurde bei uns übrigens Fp geschrieben.
>  Wird wohl keinen Unterschied machen.

Nein. Sollte das Gleiche sein... ;-)
  

> >, dass so gebildet wird: ... setze statt [mm]t[/mm] einfach [mm]t+1[/mm]
> So war auch meine erste Interpretation.
>  Dann ist also
> Fp(1) = [mm]p_0[/mm] * [mm]1^0[/mm] + ... + [mm]p_5[/mm] * [mm]1^5[/mm] = [mm]p_0[/mm] + ... + [mm]p_5[/mm]
>  Richtig ?

[ok]

> > Es gilt für das Einspolynom:
>  > [mm]\mathbb{I}(t) = 1 \cdot t^0 + 0 \cdot t^1 + 0 \cdot t^2 + 0 \cdot t^3 + 0 \cdot t^4 + 0 \cdot t^5[/mm].

>  
> Das Einspolynom ist also einfach die Darstellung der Zahl 1
> als Polynom?

[ok]

>  Warum einfach, wenns auch kompliziert geht ;)... Wozu das
> wieder gut sein soll. Tztztztz ;)

Naja, es ist halt ein Bestandteil der Standardbasis im Polynomraum.

Viele Grüße
Julius  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]