www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Varianz-Frage
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Statistik (Anwendungen)" - Varianz-Frage
Varianz-Frage < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz-Frage: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:00 Mo 09.03.2015
Autor: senmeis

Hi,

ich habe zwei Gruppen von Längen L1a, L1b, L1C (Gruppe 1), L2a, L2b, L2c (Gruppe 2). Nun möchte ich wissen ob Längen in Gruppe 1 oder Gruppe 2 relativ gleich sind. Ich denke ich kann Varianzen nehmen, aber spielt die Länge eine Rolle? Ich meine eine gleiche Varianz hat sicherlich verschiedene Bedeutungen für 1m Länge und 10m Länge.

Senmeis


        
Bezug
Varianz-Frage: Antwort
Status: (Antwort) fertig Status 
Datum: 22:30 Mo 09.03.2015
Autor: steppenhahn

Hallo,


> ich habe zwei Gruppen von Längen L1a, L1b, L1C (Gruppe 1),
> L2a, L2b, L2c (Gruppe 2). Nun möchte ich wissen ob Längen
> in Gruppe 1 oder Gruppe 2 relativ gleich sind. Ich denke
> ich kann Varianzen nehmen, aber spielt die Länge eine
> Rolle? Ich meine eine gleiche Varianz hat sicherlich
> verschiedene Bedeutungen für 1m Länge und 10m Länge.

Natürlich spielt die Länge der Werte in Bezug auf die Varianz eine Rolle.

Was genau möchtest du denn als Ergebnis? Also wie wirst du urteilen, ob die Längen in Gruppe 1 und 2 "relativ gleich" sind?

Wenn du es etwas genauer machen möchtest, könntest du einen statistischen Test ausprobieren.
Wenn du zum Beispiel davon ausgehst, dass die Längen L1a, L1b, L1c etc. normalverteilt sind mit Mittelwert [mm] $\mu_1$ [/mm] und Varianz [mm] $\sigma$ [/mm] und die anderen Längen L2a, L2b, L2c normalverteilung mit Mittelwert [mm] $\mu_2$ [/mm] und Varianz [mm] $\sigma$, [/mm] kannst du einen []Zweistichproben-t-Test benutzen.

Damit kannst du testen, ob die durchschnittlichen Längen der ersten Stichprobe [mm] $\mu_1$ [/mm] ungefähr den Längen der zweiten Stichprobe [mm] $\mu_2$ [/mm] entsprechen, wobei du aber von gleicher Varianz in der ersten und zweiten Stichprobe ausgehst.

Der Test wird so durchgeführt, dass du eine beobachteten Werte in eine "Teststatistik" T einsetzt (diese besteht aus Mittelwerten und Varianzen der Beobachtungen) und dann überprüfst, ob dieses T einen bestimmten Wert überschreitet.

---

Falls das zu kompliziert ist: In Anlehnung an den t-Test empfiehlt es sich also eher, statt nur die Varianzen zu betrachten, den sogenannten []Variationskoeffizienten zu benutzen. D.h. vergleiche nicht die Varianzen, sondern

[mm] $\frac{\sqrt{\mbox{Varianz}}}{\mbox{Mittelwert}}$. [/mm]


Viele Grüße,
Stefan

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]