www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVarianz Schätzer
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Varianz Schätzer
Varianz Schätzer < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:18 Mo 12.12.2011
Autor: MattiJo

Aufgabe
Sei [mm] (X_1, [/mm] ..., [mm] X_n) [/mm] eine einfache Zufallsstichprobe, wobei [mm] X_i [/mm] ~ [mm] U(\Theta, \Theta+1) [/mm] mit Parameter [mm] \Theta \in \IR. [/mm] Es seien zwei Schätzer [mm] \hat \Theta_1 [/mm] und [mm] \hat \Theta_2 [/mm] für [mm] \Theta [/mm] gegeben durch

[mm] \hat{\Theta_1} [/mm] = [mm] \overline X_n [/mm] - [mm] \bruch{1}{2} [/mm]

und

[mm] \hat{\Theta_2} [/mm] = [mm] min(X_1, [/mm] ..., [mm] X_n) [/mm]


Berechnen Sie den Bias und die Varianz der beiden Schätzer.

Mein Ansatz lautet für den ersten Schätzer:

- Die Dichte lautet f(x) = 1, wenn [mm] \Theta \le [/mm] x [mm] \le \Theta [/mm] + 1

Der Erwartungswert für die Zufallsvariable lautet

EX = [mm] \overline X_n [/mm] = [mm] \integral_{-\infty}^{\infty}{x f(x) dx} [/mm] = [mm] \integral_{\Theta}^{\Theta+1}{x dx} [/mm] = [mm] \bruch{1}{2} x^2 |_{\Theta}^{\Theta+1} [/mm] = [mm] \Theta [/mm] + [mm] \bruch{1}{2} [/mm]

[mm] \to E\hat \Theta_1 [/mm] = EX - [mm] \bruch{1}{2} [/mm] = [mm] \Theta [/mm] + [mm] \bruch{1}{2} [/mm] - [mm] \bruch{1}{2} [/mm] = [mm] \Theta [/mm]

Damit wäre [mm] Bias(\hat \Theta_1) [/mm] = 0.
Ist das soweit korrekt? Falls nicht, bitte schnell korrigieren! ;)

Außerdem suche ich noch die Varianz für [mm] \hat \Theta_1. [/mm] Wie berechne ich die? Ich hab ja die Verteilung für X, und kann damit die Var(x) berechnen, aber ich brauch ja die für den Schätzer...wie ist da der Zusammenhang?

Wie komm ich beim zweiten Schätzer auf den Erwartungswert (und damit auf den Bias)?

        
Bezug
Varianz Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 15:24 Mo 12.12.2011
Autor: Teufel

Hi!

Ok, also [mm] E(\Theta_1)=E(\overline{X_n}-\frac{1}{2})=E(\overline{X_n})-\frac{1}{2}. [/mm] Da alle [mm] X_i [/mm] identisch verteilt sind, gilt [mm] E(\overline{X_n})=E(X_1) [/mm] z.B.

[mm] E(X_1) [/mm] hast du richtig ausgerechnet, [mm] E(X_1)=\Theta_1+\frac{1}{2}. [/mm] Damit stimmt dein Ergebnis also, nur die Schreibweisen waren nicht ganz klar (was ist das X?).

Für die Varianz gilt folgendes: Var(X+a)=Var(X) für a [mm] \in \IR. [/mm]
Daher ist [mm] Var(\Theta_1)=Var(\overline{X_n}-\frac{1}{2})=Var(\overline{X_n}). [/mm]

Sind die [mm] X_i [/mm] eigentlich (paarweise) unabhängig oder (paarweise) unkorreliert? Dann gilt für die Varianz nämlich auch [mm] Var(X_1+X_2+...+X_n)=Var(X_1)+Var(X_2)+...+Var(X_n). [/mm] Hilft dir das?

Bezug
                
Bezug
Varianz Schätzer: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Mo 12.12.2011
Autor: MattiJo

Vielen Dank soweit! :-)

Ist die Varianz von [mm] \overline X_n [/mm] dann die Summe über alle einzelnen Varianzen? Da die Stichprobenvariablen gleichverteilt sind, wäre die Varianz dann hier nicht einfach n [mm] \cdot \bruch{1}{12} (\Theta+1 [/mm] - [mm] \Theta)^2 [/mm] = [mm] \bruch{1}{12}? [/mm]

Wie kann ich den Erwartungswert beim anderen Schätzer bestimmen? Beim Minimum?

Vielen Dank für die Hilfe!!

Bezug
                        
Bezug
Varianz Schätzer: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Mo 12.12.2011
Autor: Teufel

So ähnlich. Schreib dir alles nochmal genau auf!

[mm] Var(\overline{X_n})=Var(\frac{1}{n}*\summe_{i=1}^{n}X_i)=\frac{1}{n^2}*Var(\summe_{i=1}^{n}X_i)=\frac{1}{n^2}*\summe_{i=1}^{n}Var(X_i)=\frac{1}{n^2}*n*Var(X_1). [/mm] Nicht den Vorfaktor vergessen! Dieser springt bei der Varianz auch immer quadratisch raus, d.h. [mm] Var(aX)=a^2*Var(X). [/mm]

Damit erhältst du dein Ergebnis, nur eben noch durch n geteilt. Daran siehst du auch, dass für großes n die Varianz gegen 0 geht, also wenn du viele Beobachtungen machst, dann streut der Schätzer kaum noch.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]