www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikVarianz einer Linearkombi.
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Stochastik" - Varianz einer Linearkombi.
Varianz einer Linearkombi. < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Varianz einer Linearkombi.: Korrektur/Tipp
Status: (Frage) beantwortet Status 
Datum: 11:17 Mo 30.03.2009
Autor: grenife

Aufgabe
Seien [mm] $Y_1,\ldots,Y_n$ [/mm] Zufallsvariablen mit endlicher Varianz.
(1) Zeigen Sie, dass für beliebige Konstanten $a,b$ gilt:
[mm] $var(aY_1+bY_2)=a^2var(Y_1)+2abcov(Y_1,Y_2)+b^2\arY_2$. [/mm]
(2) Nehmen Sie an, dass die [mm] $Y_1,\ldots,Y_n$ [/mm] stoch. unabhängig mit identischer Varianz [mm] $\sigma^2<\infty$ [/mm] sind. Zeigen Sie für beliebige Konstanten [mm] $a_1,\ldots,a_n$, [/mm] dass
[mm] $var\sum_{i=1}^na_iY_i=\sigma^2\sum_{i=1}^na_i^2$ [/mm]
gilt.

Hallo zusammen,

würde mich über ein Feedback zu meiner Lösung freuen. Bei der zweiten Teilaufgabe hänge ich noch etwas bei dem Induktionsbeweis, vielleicht kann mir ja jemand einen kleinen Denkanstoß geben.

zu (1):
Laut Definition der Varianz gilt mit [mm] $Z:=aY_1+bY_2$: [/mm]
[mm] $var(aY_1+bY_2)=E((Z-E(Z))^2)$ [/mm]
Die zweite binomische Formel zusammen mit der Linearität des Erwartungswertes und der Tatsache, dass $E(E(Z))=E(Z)$ ist, liefert den Verschiebungssatz:
[mm] $E((Z-E(Z))^2)=E(Z^2-2Z\cdot E(Z)+(E(Z))^2)=E(Z^2)-(E(Z))^2$ [/mm]

Eingesetzt ergibt sich
[mm] $E((aY_1+bY_2)^2)-(E(aY_1+bY_2))^2$ [/mm]
[mm] $=a^2E(Y_1^2)+b^2E(Y_2^2)+2abE(Y_1Y_2)-a^2(E(Y_1))^2-b^2(E(Y_2))^2-2ab(E(Y_1)E(Y_2)$ [/mm]
[mm] $=2ab[E(Y_1Y_2)-E(Y_1)E(Y_2)]+a^2[E(Y_1^2)-(E(Y_1))^2]+b^2[E(Y_2^2)-(E(Y_2))^2]$ [/mm]
und mit dem Verschiebungssatz für die Kovarianz schließlich.
[mm] $=2abcov(Y_1,Y_2)+a^2var(Y_1)+b^2var(Y_2)$ [/mm]
q.e.d.


zu (2):
Da [mm] $\sigma^2$ [/mm] unabhängig vom Laufindex ist, ist die Behauptung äquivalent zu:

[mm] $var\sum_{i=1}^na_iY_i=\sum_{i=1}^na_i^2\sigma^2$ [/mm]

Induktion nach $n$:
Induktionsanfang:
Für $n=1$ folgt die Behauptung [mm] $var(a_1Y_1)=a_1^2\sigma^2$ [/mm] einfach aus den oben genannten Eigenschaften des Erwartungswertes bzw. den Verschiebungssätze.
Der Fall $n=2$ ist in (1) dargestellt, die Kovarianz fällt wegen der stoch. Unabhängigkeit der [mm] $Y_i$ [/mm] weg.

Induktionsschritt:
Es gelte [mm] $var\sum_{i=1}^na_iY_i=\sigma^2\sum_{i=1}^na_i^2$ [/mm] für ein festes $n$ und wir betrachten
[mm] $var\left(\sum_{i=1}^{n+1}a_iY_i\right)$ [/mm]
[mm] $=var\left(a_{n+1}Y_{n+1}+\sum_{i=1}^{n}a_iY_i\right)$ [/mm]

Hier hänge ich noch etwas, das Auflösen der Varianz über den Verschiebungssatz scheint mir ziemlich umständlich zu sein.

Vielen Dank für Eure Hilfe und viele Grüße
Gregor



        
Bezug
Varianz einer Linearkombi.: Antwort
Status: (Antwort) fertig Status 
Datum: 17:36 Mo 30.03.2009
Autor: vivo

Hallo,


[mm] var\left(a_{n+1}Y_{n+1}+\sum_{i=1}^{n}a_iY_i\right) [/mm] = [mm] a_{n+1}^2Var(Y_{n+1}) [/mm] + [mm] \summe a_i^2 \sigma2 [/mm]

reicht doch schon, denn dass ist doch wieder eine Summe und laut Induktionsannahme folgt die Gleichheit

Bezug
                
Bezug
Varianz einer Linearkombi.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 09:29 Di 31.03.2009
Autor: grenife

Hallo,

ich glaube, so einfach geht das nicht. Klar, die Varianz des zweiten Summanden kann ich mit der Induktionsannahme zur Summe der Varianzen mal [mm] $a_i^2$ [/mm] auflösen, aber dafür muss ich ja die Varianz erst IN die Klammer ziehen, und da die Varianz nicht linear ist, klappt das nicht. Ich fürchte eben, dass ich die Summe formal auflösen, mit [mm] $cov(Y_i,Y_j)=0$ [/mm] vereinfachen und am Ende mit der Induktionsannahme auflösen muss.

Viele Grüße
Gregor

> Hallo,
>  
>
> [mm]var\left(a_{n+1}Y_{n+1}+\sum_{i=1}^{n}a_iY_i\right)[/mm] =
> [mm]a_{n+1}^2Var(Y_{n+1})[/mm] + [mm]\summe a_i^2 \sigma2[/mm]
>  
> reicht doch schon, denn dass ist doch wieder eine Summe und
> laut Induktionsannahme folgt die Gleichheit


Bezug
                        
Bezug
Varianz einer Linearkombi.: Antwort
Status: (Antwort) fertig Status 
Datum: 11:42 Di 31.03.2009
Autor: vivo

Hallo,

[mm]Var(X_1 + X_2 + ... + X_n)=E[X_1 + X_2 + ... + X_n - E(X_1 + X_2 + ... + X_n)]^2=E[(X_1-EX_1)+...+(X_n-EX_n)]^2=\sum_{i,j=1}^{n}E[(X_i-EX_i)(X_j-EX_j)]=\sum_{i=1}^{n}E[(X_i-EX_i)]^2+\sum_{i,j=1_{i\not= j}}^{n}E[(X_i-EX_i)(X_j-EX_j)]=\sum_{i=1}^{n}Var(X_i)+2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Cov(X_i,X_j)[/mm]

und die Cov sind natürlich aufgrund der Unabhängigkeit alle gleich Null!

Aber die Induktionsbeweis sollte eigenltich auch halten, du könntest jetzt natürlich sagen dass du aus a) folgende Induktionsannahme hast:

[mm]\sum_{i=1}^{n}Var(X_i)+2\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} Cov(X_i,X_j)[/mm]

(eben das resultat aus a) bezogen auf mehr als zwei ZV's)

und dann:

[mm]Var(X_{n+1}+ \sum_{i=1}^{n}X_i)=Var(X_{n+1}) + \sum_{i=1}^{n} \sigma^2 + 2 Cov(X_{n+1}, \sum_{i=1}^{n}X_i)[/mm]

da die ZV's unabhängig sind, ist auch [mm] (X_{n+1}) [/mm] und [mm] (\sum_{i=1}^{n}X_i) [/mm] unabhänig, also die Cov gleich Null.

wegen dem letzten Argument über die unabhängigkeit, sollte es auch so reichen wie du es erst hattest, denn da wir die Induktionsannahme ja, dass für unabhängige ZV's gilt:

[mm]Var(\sum_{i=1}^{n}X_i)=\sum_{i=1}^{n} Var(X_i)[/mm]

also dann:

[mm]Var(X_{n-1} + \sum_{i=1}^{n-1}X_i)=Var(X_{n-1})+\sum_{i=1}^{n-1} Var(X_i)=\sum_{i=1}^{n}Var(X_n)[/mm]

würde ich zumindest sagen ... der Weg durch Berechnung ganz am Anfang dieser Antwort stimmt in jedem Fall.

Gruß

Bezug
                                
Bezug
Varianz einer Linearkombi.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:07 Di 31.03.2009
Autor: grenife

Hallo vivo,

so könnte es wohl klappen. Eine kurze Frage noch: die Tatsache, dass in Deinen Ausführungen der Koeffizient [mm] $a_i$ [/mm] jeweis fehlt, kann ich wahrscheinlich umgehen, indem ich Deine Ergebnisse auf die ZVen [mm] $Z_i:=a_iX_i$ [/mm] anwende oder? Wenn ich dann alles aufgelöst habe, kann ich ja dann zurück substituieren und die einzelnen Varianzen von [mm] $a_iX_i$ [/mm] ausrechnen.

Viele Grüße
Gregor




Bezug
                                        
Bezug
Varianz einer Linearkombi.: Antwort
Status: (Antwort) fertig Status 
Datum: 12:12 Di 31.03.2009
Autor: vivo

so ist es!

Gruß

vivo

Bezug
                                                
Bezug
Varianz einer Linearkombi.: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:06 Di 31.03.2009
Autor: grenife

Hallo nochmal,

mir ist ein Schritt in Deinem Beweis noch unklar.
Wie kommst Du denn auf die folgende Gleichung?

[mm] $E[(X_1-EX_1)+...+(X_n-EX_n)]^2=\sum_{i,j=1}^{n}E[(X_i-EX_i)(X_j-EX_j)]$ [/mm]

Ich glaube langsam, dass ich um den Induktionsbeweis nicht herum komme...

Viele Grüße
Gregor

Bezug
                                                        
Bezug
Varianz einer Linearkombi.: Antwort
Status: (Antwort) fertig Status 
Datum: 15:50 Di 31.03.2009
Autor: vivo

Hallo,

Du musst nur das quadrat ausführen! Probier es doch mal mit n=4 aus, dann siehst Du es schon!

Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]