www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesVektor für Othogonalmatrix
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Vektor für Othogonalmatrix
Vektor für Othogonalmatrix < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor für Othogonalmatrix: Aufgabe1
Status: (Frage) beantwortet Status 
Datum: 15:22 Mo 12.01.2015
Autor: schneeflocke11

Aufgabe
Zu den Vektoren
v1= [mm] \vektor{1/\wurzel{2} \\ 1/2 \\ -1/2} [/mm]
[mm] v2=\vektor{0 \\ 1/\wurzel{2} \\ 1/\wurzel{2} } [/mm]
bestimme man einen dritten Vektor v3, sodass die Vektoren(v1,v2,v3) die Spalten einer orthogonalen Matrix bilden.

Hallo!

Wenn ich die beiden Vektoren als Gleichungen aufschreibe

[mm] 1/1/\wurzel{2} [/mm] a + 1/2b  -1/2 = 0
0a + [mm] 1/\wurzel{2}b [/mm]  + [mm] 1/\wurzel{2}c [/mm]  = 0

bekomme ich folgende Werte:

b = -c, a = 0

jetzt weiß ich leider nicht mehr weiter :(
wie komme ich auf den dritten Vektor?
reicht es die Werte einzusetzen? [mm] (v3=\vektor{0 \\ 1 \\ -1}) [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vektor für Othogonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Mo 12.01.2015
Autor: fred97


> Zu den Vektoren
>  v1= [mm]\vektor{1/\wurzel{2} \\ 1/2 \\ -1/2}[/mm]
>  [mm]v2=\vektor{0 \\ 1/\wurzel{2} \\ 1/\wurzel{2} }[/mm]
>  
> bestimme man einen dritten Vektor v3, sodass die
> Vektoren(v1,v2,v3) die Spalten einer orthogonalen Matrix
> bilden.
>  Hallo!
>  
> Wenn ich die beiden Vektoren als Gleichungen aufschreibe
>  
> [mm]1/1/\wurzel{2}[/mm] a + 1/2b  -1/2 = 0
>  0a + [mm]1/\wurzel{2}b[/mm]  + [mm]1/\wurzel{2}c[/mm]  = 0

Was sollen denn das für Gleichungen sein ?


>  
> bekomme ich folgende Werte:
>  
> b = -c, a = 0
>  
> jetzt weiß ich leider nicht mehr weiter :(
>  wie komme ich auf den dritten Vektor?
>  reicht es die Werte einzusetzen? [mm](v3=\vektor{0 \\ 1 \\ -1})[/mm]
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  


Bilde das Kreuzprodukt  von [mm] v_1 [/mm] und [mm] v_2 [/mm] und normiere das Resultat.

FRED

Bezug
                
Bezug
Vektor für Othogonalmatrix: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:33 Mo 12.01.2015
Autor: schneeflocke11

Aufgabe
> Zu den Vektoren
>  v1= $ [mm] \vektor{1/\wurzel{2} \\ 1/2 \\ -1/2} [/mm] $
>  $ [mm] v2=\vektor{0 \\ 1/\wurzel{2} \\ 1/\wurzel{2} } [/mm] $
>  
> bestimme man einen dritten Vektor v3, sodass die
> Vektoren(v1,v2,v3) die Spalten einer orthogonalen Matrix
> bilden.


Bilde das Kreuzprodukt  von $ [mm] v_1 [/mm] $ und $ [mm] v_2 [/mm] $ und normiere das Resultat.

FRED

Danke für deine schnelle Antwort!

ich habe nun das Kreuzprodukt geblildet:

w3 = [mm] \vektor{0 \\ -1/2 \\ 1/2} [/mm]

und den Vektor normiert:

v3 = [mm] \vektor{0 \\ -1/\wurzel{2} \\ 1/\wurzel{2}} [/mm]

Kontrolle:

[mm] \wurzel{0²+(-1/\wurzel{2})²+(-1/\wurzel{2})²}= [/mm] 1


Bezug
                        
Bezug
Vektor für Othogonalmatrix: Antwort
Status: (Antwort) fertig Status 
Datum: 16:51 Mo 12.01.2015
Autor: fred97


> > Zu den Vektoren
> >  v1= [mm]\vektor{1/\wurzel{2} \\ 1/2 \\ -1/2}[/mm]

> >  [mm]v2=\vektor{0 \\ 1/\wurzel{2} \\ 1/\wurzel{2} }[/mm]

> >  

> > bestimme man einen dritten Vektor v3, sodass die
> > Vektoren(v1,v2,v3) die Spalten einer orthogonalen Matrix
> > bilden.
>
>
> Bilde das Kreuzprodukt  von [mm]v_1[/mm] und [mm]v_2[/mm] und normiere das
> Resultat.
>
> FRED
>  Danke für deine schnelle Antwort!
>  
> ich habe nun das Kreuzprodukt geblildet:
>  
> w3 = [mm]\vektor{0 \\ -1/2 \\ 1/2}[/mm]

Das stimmt nicht.

FRED

>  
> und den Vektor normiert:
>  
> v3 = [mm]\vektor{0 \\ -1/\wurzel{2} \\ 1/\wurzel{2}}[/mm]
>  
> Kontrolle:
>  
> [mm]\wurzel{0²+(-1/\wurzel{2})²+(-1/\wurzel{2})²}=[/mm] 1
>  


Bezug
                                
Bezug
Vektor für Othogonalmatrix: Aufgabe1
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:25 Mo 12.01.2015
Autor: schneeflocke11

Stimmt, da hab ich mich verrechnet:

w3 = [mm] \vektor{1/\wurzel{2} \\ -0,5 \\ 0,5} [/mm] = v3 weil [mm] \vmat{ v } [/mm] = 1

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]