www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenVektor in der ebene
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Geraden und Ebenen" - Vektor in der ebene
Vektor in der ebene < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektor in der ebene: kleine Höhenfusspunktfrag
Status: (Frage) beantwortet Status 
Datum: 01:31 Fr 12.05.2006
Autor: Rien

Aufgabe
Gegeben sei das dreieck: A: (-6/-4), B(10/-4) C( 8/10)
Berchnung: Höhenfußpunkt H1, H2,H3

Hallo

Hätte da eine kleine un-umkehrirische fragen zwischendurch..

ich stelle erstmals geradengleich durch  [mm] \overline{AC} [/mm] auf (nAC)
x-y= -2
und stell dann geraden gleichung der Höhenlinie auf. Die steht normal.
x+y=-2

und schneide die..?!
gehe ich dann mit H2,H3 ( Höhenfusspunkt 2,3)GENAUSO vor`?

[mm] \overline{BC}: \vektor{-2\\ 14} [/mm] Gekürzt:  [mm] \vektor{-1 \\ 7} [/mm]
n [mm] \overline{BC}: \vektor{-7\\ 1} [/mm]


-7x+y= 66 (Geradengleicung durch BC-Normalvektormform)
-x+7y= -22 (geradengleichung der höhenenlinie)
dann schneide ich die ...
Wäre das dann falsch?fehler dabei? Kann mir evtl dazu jemand was kurz erläutern?

Mfg


        
Bezug
Vektor in der ebene: Korrektur
Status: (Antwort) fertig Status 
Datum: 23:10 Sa 13.05.2006
Autor: Loddar

Hallo Rien!


> ich stelle erstmals geradengleich durch  [mm]\overline{AC}[/mm] auf (nAC)
> x-y= -2

[ok]


> und stell dann geraden gleichung der Höhenlinie auf. Die
> steht normal.
> x+y=-2

Wie kommst Du hier auf die $-2_$ ? Du kennst hier ja nicht den Abstand dieser neuen Geraden vom Ursprung.

Durch Einsetzen in [mm] $\vec{n}*\left[\vec{x}-\vec{b}\right] [/mm] \ = \ 0$ ergibt sich diese Höhenlinie:

[mm] $\vektor{1\\1}*\left[\vektor{x\\y}-\vektor{10\\-4}\right] [/mm] \ = \ 0$   [mm] $\gdw$ [/mm]   $x+y \ = \ [mm] \red{6}$ [/mm]

Der Schnittpunkt der Geraden [mm] $\overline{AC}$ [/mm] mit der Geraden [mm] $\overline{H_B B}$ [/mm] ergibt den gesuchten Höhenfußpunkt [mm] $H_B$ [/mm] .


Analog dann mit den anderen beiden Seiten bzw. Höhenfußpunkten verfahren.


Gruß
Loddar


Bezug
                
Bezug
Vektor in der ebene: Dankeeee!:)
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 02:35 Mo 15.05.2006
Autor: Rien

Hey hallo Loddar

stimmt.. "6"
*daumenhoch*
danke erstmals auch für restliche erklärung!
habs locker kapiert.


LG :-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]