www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesVektorbeweis
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra Sonstiges" - Vektorbeweis
Vektorbeweis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorbeweis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:54 So 24.04.2011
Autor: kushkush

Aufgabe
Man zeige: zu zwei Vektoren $a,b [mm] \in \IR^{3}$ [/mm] existiert genau ein Vektor $v [mm] \in \IR^{3}$ [/mm] mit den Eigenschaften:

a) $v [mm] \perp [/mm] a$ und $ v [mm] \perp [/mm] b$

b) Die Länge von $v$ gibt den Inhalt der Fläche des Parallelogramms an, welches von $a$ und $b$ aufgespannt wird.

c) $det(a,b,v)>0$

Hallo,


bei a) habe ich das Kreuzprodukt eingesetzt in das Skalarprodukt: $av=0$ und $bv=0$   berechnet. Es wird für beide erfüllt.

b) Die Länge von v ist der Betrag von v, der Flächeninhalt des Parallelograms ist gegeben durch : [mm] $A=|(a^{2}b^{2}-(ab)^{2})^{1/2}|$ [/mm] die Länge mit dem Flächeninhalt des Parallelogramms gleichsetzen und eine Seite von der anderen abziehen. Wenn ich 0 erhalte dann bin ich fertig.

c) auflösen mit Laplace  


Reicht das schon als Zeigen? Wie zeige ich denn die Eindeutigkeit? Es gibt doch zum Beispiel immer 2 Vektoren, die senkrecht auf eine Ebene stehen wenn ich die Reihenfolge beim Kreuzprodukt vertausche! Also ist die Voraussetzung schon falsch???  


Ich habe diese Frage in keinem anderen Forum gestellt.

Danke und Gruss
kushkush

        
Bezug
Vektorbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 00:28 Mo 25.04.2011
Autor: reverend

Hallo kushkush,

ja, fast fertig.

> Man zeige: zu zwei Vektoren [mm]a,b \in \IR^{3}[/mm] existiert genau
> ein Vektor [mm]v \in \IR^{3}[/mm] mit den Eigenschaften:
>  
> a) [mm]v \perp a[/mm] und [mm]v \perp b[/mm]
>  
> b) Die Länge von [mm]v[/mm] gibt den Inhalt der Fläche des
> Parallelogramms an, welches von [mm]a[/mm] und [mm]b[/mm] aufgespannt wird.
>
> c) [mm]det(a,b,v)>0[/mm]

>

> bei a) habe ich das Kreuzprodukt eingesetzt in das
> Skalarprodukt: [mm]av=0[/mm] und [mm]bv=0[/mm]   berechnet. Es wird für
> beide erfüllt.

[ok]

> b) Die Länge von v ist der Betrag von v, der
> Flächeninhalt des Parallelograms ist gegeben durch :
> [mm]A=|(a^{2}b^{2}-(ab)^{2})^{1/2}|[/mm] die Länge mit dem
> Flächeninhalt des Parallelogramms gleichsetzen und eine
> Seite von der anderen abziehen. Wenn ich 0 erhalte dann bin
> ich fertig.

[ok]

> c) auflösen mit Laplace  

Ja, z.B.
Oder mit Sarrus. Egal.

> Reicht das schon als Zeigen?

Prinzipiell: ja.

> Wie zeige ich denn die
> Eindeutigkeit? Es gibt doch zum Beispiel immer 2 Vektoren,
> die senkrecht auf eine Ebene stehen wenn ich die
> Reihenfolge beim Kreuzprodukt vertausche! Also ist die
> Voraussetzung schon falsch???  

Nein, denn der eine Vektor erfüllt hier Bedingung c) nicht, der andere schon. Darum geht es - die Orientierung der drei Vektoren.

Grüße
reverend


Bezug
        
Bezug
Vektorbeweis: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 Mo 25.04.2011
Autor: Al-Chwarizmi


> Man zeige: zu zwei Vektoren [mm]a,b \in \IR^{3}[/mm] existiert genau
> ein Vektor [mm]v \in \IR^{3}[/mm] mit den Eigenschaften:
>  
> a) [mm]v \perp a[/mm] und [mm]v \perp b[/mm]
>  
> b) Die Länge von [mm]v[/mm] gibt den Inhalt der Fläche des
> Parallelogramms an, welches von [mm]a[/mm] und [mm]b[/mm] aufgespannt wird.
>
> c) [mm]det(a,b,v)>0[/mm]
>  Hallo,
>  
>
> bei a) habe ich das Kreuzprodukt eingesetzt in das
> Skalarprodukt: [mm]av=0[/mm] und [mm]bv=0[/mm]   berechnet. Es wird für
> beide erfüllt.
>
> b) Die Länge von v ist der Betrag von v, der
> Flächeninhalt des Parallelograms ist gegeben durch :
> [mm]A=|(a^{2}b^{2}-(ab)^{2})^{1/2}|[/mm] die Länge mit dem
> Flächeninhalt des Parallelogramms gleichsetzen und eine
> Seite von der anderen abziehen. Wenn ich 0 erhalte dann bin
> ich fertig.
>
> c) auflösen mit Laplace  
>
>
> Reicht das schon als Zeigen? Wie zeige ich denn die
> Eindeutigkeit? Es gibt doch zum Beispiel immer 2 Vektoren,
> die senkrecht auf eine Ebene stehen wenn ich die
> Reihenfolge beim Kreuzprodukt vertausche! Also ist die
> Voraussetzung schon falsch???  
>
>
> Ich habe diese Frage in keinem anderen Forum gestellt.
>  
> Danke und Gruss
>  kushkush


Hallo kushkush,

zwei Bemerkungen:

1.)  In der Aufgabenstellung fehlt noch eine zusätzliche
     Voraussetzung, nämlich dass die Vektoren a und b
     linear unabhängig sein sollen. Ist dies nämlich nicht
     der Fall, so kann jedenfalls die Bedingung (c) nicht
     erfüllt werden.  

2.)  Die Eindeutigkeit muss wirklich noch bewiesen werden.
     Man muss insbesondere noch zeigen, dass jeder Vektor
     v mit  $ v [mm] \perp [/mm] a $ und $ v [mm] \perp [/mm] b $ (mit linear unabhängigen a,b)  
     kollinear zu  [mm] a\times{b} [/mm]  ist.

    
LG     Al-Chw.

Bezug
                
Bezug
Vektorbeweis: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:23 Mo 25.04.2011
Autor: kushkush

Hallo reverend und Al-Chwarizmi,



> Korrekturen



Danke!



> GrüBe
> LG

Gruss

kushkush

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]