www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektoren
Vektoren < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren: Tipp
Status: (Frage) beantwortet Status 
Datum: 19:37 Sa 22.12.2007
Autor: tim_tempel

Aufgabe
Für zwei Vektoren [mm] \vec{a} [/mm]  und [mm] \vec{b} [/mm] gilt:
[mm] \vec{a} \* \vec{b} = \wurzel{6}[/mm] und [mm] \vec{a} \times \vec{b} = \vektor{\wurzel{2} \\-1 \\ \wurzel{3}}[/mm]
Welchen Winkel schließen sie ein?

Kann mir einer einen Tipp geben, wie ich diese Aufgabe löse?

        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 19:48 Sa 22.12.2007
Autor: Tyskie84

Hallo!

Weisst du denn wie man allgemein den Winkel zwischen 2 Vektoren berechnet? Zunächst musst du ja an deine Vektoren [mm] \vec{a} [/mm] und [mm] \vec{b} [/mm] herankommen und dann mit der allgemeinen Formel weiterrechnen..

[cap] Gruß

Bezug
                
Bezug
Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:34 So 23.12.2007
Autor: tim_tempel

das mache ich mit dem skalarprodukt. komme trotzdem noch nicht weiter.

Bezug
                        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 15:51 So 23.12.2007
Autor: Event_Horizon

Hallo!

Kennst du das?

[mm] $|\vec [/mm] a [mm] \times \vec [/mm] b [mm] |=|\vec [/mm] a [mm] ||\vec b|*\sin(\angle \vec [/mm] a , [mm] \vec [/mm] b)$

Damit und mit dem Skalarprodukt sollte es gehn.

Bezug
                                
Bezug
Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:58 So 23.12.2007
Autor: tim_tempel

mit der rechnung habe ich noch meine probleme, trotz der formeln.

habe [mm] \vec{a} \* \vec{b} = \wurzel{6}[/mm].
um den winkel zu berechnen müsste ich doch wie folgt vorgehen.
[mm] \vec{a} \* \vec{b} = \vec{|a|} \* \vec{|b|} cos(a,b)[/mm]
also,
[mm] \bruch{\vec{a}\*\vec{b}}{\wurzel{6}} = cos(a,b) [/mm]

wie kann ich hier weiter machen?



Bezug
                                        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 So 23.12.2007
Autor: rainerS

Hallo!

> mit der rechnung habe ich noch meine probleme, trotz der
> formeln.
>  
> habe [mm]\vec{a} \* \vec{b} = \wurzel{6}[/mm].
>  um den winkel zu
> berechnen müsste ich doch wie folgt vorgehen.
>  [mm]\vec{a} \* \vec{b} = \vec{|a|} \* \vec{|b|} cos(a,b)[/mm]
>  
> also,
>  [mm]\bruch{\vec{a}\*\vec{b}}{\wurzel{6}} = cos(a,b)[/mm]

Nein, da hast du falsch umgestellt:

[mm] \bruch{\wurzel{6}}{|\vec{a}|*|\vec{b}|} = \cos(a,b)[/mm]


> wie kann ich hier weiter machen?

Das Gleiche für den Sinus, denn [mm]|\vec{a}\times\vec{b}| [/mm] kannst du doch aus den Angaben ausrechnen. Damit hast du:

[mm] \sin(a,b) = \bruch{|\vec{a}\times\vec{b}| }{|\vec{a}|*|\vec{b}|} [/mm]

Du kannst dann entweder diese und die vorherige Formel durcheinander dividieren, oder beide quadrieren und addieren, wobei sich 1 ergibt.

Viele Grüße
   Rainer



Bezug
                                                
Bezug
Vektoren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:11 So 23.12.2007
Autor: tim_tempel

stimmt, da habe ich falsch umgestellt!

nur ist jetzt produkt [mm] \vec{{|a|} [/mm] und [mm] \vec{{|b|} [/mm] unbekannt. dann habe ich noch das kreuzprodukt. was oder wie kann ich jetzt dividieren um auf das ergebnis zu kommen?


Bezug
                                                        
Bezug
Vektoren: Antwort
Status: (Antwort) fertig Status 
Datum: 23:35 So 23.12.2007
Autor: Kroni

Hi,

du hast doch in beiden "Formeln" |a| und |b| drinstehen. Dann teilst du beide durcheinander, und dann kürzen sich die beiden Unbekannten raus.

LG

Kroni

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]