Vektoren,Geraden,Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Aufgabe | 1) Zeigen Sie, dass je drei der vier Vektoren linear Abhängig sind:
( 1 ) ( 2 ) ( 1 ) ( 5 )
(-1 ) ( 1 ) ( 0 ) (-1)
(-1 ) (-1 ) ( 1 ) ( 2 )
|
2. Zeigen sie, dass die Punkte A(1/2/1), B(3/3/4), C(2/2,5/3) auf einer
Geraden liegen.
3. Geben sie zwei verschiedene Parameterdarstellungen für die Gerade g (A,B) an. A(1/2/3) B(-4/0/5)
(1) (1)
4. Prüfen sie ob der Punkt P (2/-1/-1) auf der Geraden g: X = (0) + r (3) (1) (3)
Ebenen:
5. Geben sie zwei verschiedene Parametergleichungen für die Ebene durch
A(2/0/3) , B(8/3/14), C(1/3/5) an.
6. Untersuchen sie ob folgende vier Punkte auf einer Ebene liegen:
(0/1/-1), (2/3/5), (-1/3/-1), (2/2/2)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:02 Mi 01.11.2006 | Autor: | chmul |
Hallo skybreather,
> 1) Zeigen Sie, dass je drei der vier Vektoren linear
> Abhängig sind:
>
>
> ( 1 ) ( 2 ) ( 1 ) ( 5 )
> (-1 ) ( 1 ) ( 0 ) (-1)
> (-1 ) (-1 ) ( 1 ) ( 2 )
>
>
> 2. Zeigen sie, dass die Punkte A(1/2/1), B(3/3/4),
> C(2/2,5/3) auf einer
> Geraden liegen.
>
>
> 3. Geben sie zwei verschiedene Parameterdarstellungen für
> die Gerade g (A,B) an. A(1/2/3) B(-4/0/5)
>
>
> (1) (1)
> 4. Prüfen sie ob der Punkt P (2/-1/-1) auf der Geraden
> g: X = (0) + r (3) (1) (3)
>
>
>
> Ebenen:
>
> 5. Geben sie zwei verschiedene Parametergleichungen für die
> Ebene durch
> A(2/0/3) , B(8/3/14), C(1/3/5) an.
>
> 6. Untersuchen sie ob folgende vier Punkte auf einer Ebene
> liegen:
> (0/1/-1), (2/3/5), (-1/3/-1), (2/2/2)
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Welche Frage??
Ich gehe mal davon aus, dass du nicht weißt wie man an diese Aufgabe rangeht. Deshalb wäre es wichtig, dass du uns deinen Ansatz postest, denn um z.B. die erste Aufgabe zu lösen gibt es zahlreiche Möglichkeiten.
Abgesehen davon musst du schon zeigen, dass du dir auch Gedanken dazu machst, denn sonst hat das Ganze keinen Sinn und es wird niemand auf deine Frage antworten.
Also, schreib uns wo deine Probleme liegen und was du nicht verstehst und wir werden dir ganz sicher helfen.
MfG
chmul
|
|
|
|
|
hallöle, also ich muss sagen, so einfach die aufgaben hinzuklatschen ist nicht sehr nett... und du bist zw 21 und 25 und in der 12. klasse? komisch.
aber da wir ja nett sind, will ich dir wenigstens bei der 2. aufgabe ein wenig helfen....
Punkt A und B bilden ja immer eine Gerade, diese kannst du darstellen durch
1 3
[mm] \vec{x}= [/mm] 2 + t* 3
1 4
und dann setzt du für [mm] \vec{x} [/mm] den Punkt C ein, hast drei Gleichungen mit einer unbekannten (nämlich t), rechnest t aus und wenn du ein eindeutiges t erhältst ohne widersprüche, liegen die drei punkte auf einer geraden.
ach ja, ein liebes bitte wär auch nicht schlecht...
sorry_lb
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:40 Mi 01.11.2006 | Autor: | Herby |
Hallo sorry_lb
> hallöle, also ich muss sagen, so einfach die aufgaben
> hinzuklatschen ist nicht sehr nett... und du bist zw 21 und
> 25 und in der 12. klasse? komisch.
das ist doch nur der math. Background - er muss ja nicht automatisch in der Klasse sein
Liebe Grüße
Herby
|
|
|
|
|
Bin in der 13. Klasse und bin 22 Jahre alt.
Habe eben vor dem Gymi eine Ausbildung gemacht...
ist das so ungewöhnlich?
|
|
|
|