www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenVektoren,Geraden,Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Geraden und Ebenen" - Vektoren,Geraden,Ebenen
Vektoren,Geraden,Ebenen < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren,Geraden,Ebenen: Lösungsvorschläge
Status: (Frage) beantwortet Status 
Datum: 14:33 Mi 01.11.2006
Autor: skybreather

Aufgabe
1) Zeigen Sie, dass je drei der vier Vektoren linear Abhängig sind:


( 1 )    ( 2 )   ( 1 )    ( 5 )
(-1 )    ( 1 )   ( 0 )    (-1)
(-1 )    (-1 )   ( 1 )    ( 2 )


2. Zeigen sie, dass  die Punkte A(1/2/1),  B(3/3/4),  C(2/2,5/3)   auf einer
    Geraden liegen.


3. Geben sie zwei verschiedene Parameterdarstellungen für die Gerade g (A,B)  an.   A(1/2/3)  B(-4/0/5)                            
    
                                                                                                    (1)        (1)
4. Prüfen sie ob der Punkt  P (2/-1/-1)   auf der Geraden g: X = (0)  + r  (3)     (1) (3)



Ebenen:

5. Geben sie zwei verschiedene Parametergleichungen für die Ebene durch
    A(2/0/3) ,  B(8/3/14),  C(1/3/5)  an.

6. Untersuchen sie ob folgende vier Punkte auf einer Ebene liegen:
    (0/1/-1),  (2/3/5),  (-1/3/-1), (2/2/2)



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vektoren,Geraden,Ebenen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:02 Mi 01.11.2006
Autor: chmul

Hallo skybreather,

> 1) Zeigen Sie, dass je drei der vier Vektoren linear
> Abhängig sind:
>  
>
> ( 1 )    ( 2 )   ( 1 )    ( 5 )
>  (-1 )    ( 1 )   ( 0 )    (-1)
>  (-1 )    (-1 )   ( 1 )    ( 2 )
>  
>
> 2. Zeigen sie, dass  die Punkte A(1/2/1),  B(3/3/4),  
> C(2/2,5/3)   auf einer
> Geraden liegen.
>  
>
> 3. Geben sie zwei verschiedene Parameterdarstellungen für
> die Gerade g (A,B)  an.   A(1/2/3)  B(-4/0/5)              
>              
>
> (1)        (1)
>  4. Prüfen sie ob der Punkt  P (2/-1/-1)   auf der Geraden
> g: X = (0)  + r  (3)     (1) (3)
>  
>
>
> Ebenen:
>  
> 5. Geben sie zwei verschiedene Parametergleichungen für die
> Ebene durch
> A(2/0/3) ,  B(8/3/14),  C(1/3/5)  an.
>  
> 6. Untersuchen sie ob folgende vier Punkte auf einer Ebene
> liegen:
>      (0/1/-1),  (2/3/5),  (-1/3/-1), (2/2/2)



> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Welche Frage?? ;-)

Ich gehe mal davon aus, dass du nicht weißt wie man an diese Aufgabe rangeht. Deshalb wäre es wichtig, dass du uns deinen Ansatz postest, denn um z.B. die erste Aufgabe zu lösen gibt es zahlreiche Möglichkeiten.

Abgesehen davon musst du schon zeigen, dass du dir auch Gedanken dazu machst, denn sonst hat das Ganze keinen Sinn und es wird niemand auf deine Frage antworten.

Also, schreib uns wo deine Probleme liegen und was du nicht verstehst und wir werden dir ganz sicher helfen. [bindafuer]

MfG
chmul

Bezug
        
Bezug
Vektoren,Geraden,Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:27 Mi 01.11.2006
Autor: sorry_lb

hallöle, also ich muss sagen, so einfach die aufgaben hinzuklatschen ist nicht sehr nett... und du bist zw 21 und 25 und in der 12. klasse? komisch.

aber da wir ja nett sind, will ich dir wenigstens bei der 2. aufgabe ein wenig helfen....
Punkt A und B bilden ja immer eine Gerade, diese kannst du darstellen durch
    1           3
[mm] \vec{x}= [/mm]  2     + t*  3
    1           4

und dann setzt du für [mm] \vec{x} [/mm] den Punkt C ein, hast drei Gleichungen mit einer unbekannten (nämlich t), rechnest t aus und wenn du ein eindeutiges t erhältst ohne widersprüche, liegen die drei punkte auf einer geraden.

ach ja, ein liebes bitte wär auch nicht schlecht...
sorry_lb



Bezug
                
Bezug
Vektoren,Geraden,Ebenen: math. Backround
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:40 Mi 01.11.2006
Autor: Herby

Hallo sorry_lb

> hallöle, also ich muss sagen, so einfach die aufgaben
> hinzuklatschen ist nicht sehr nett... und du bist zw 21 und
> 25 und in der 12. klasse? komisch.

das ist doch nur der math. Background - er muss ja nicht automatisch in der Klasse sein :-)



Liebe Grüße
Herby

Bezug
                        
Bezug
Vektoren,Geraden,Ebenen: Background
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 10:59 Do 02.11.2006
Autor: skybreather

Bin in der 13. Klasse und bin 22 Jahre alt.
Habe eben vor dem Gymi eine Ausbildung gemacht...
ist das so ungewöhnlich?

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]