www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare AbbildungenVektoren linear unabhängig
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Abbildungen" - Vektoren linear unabhängig
Vektoren linear unabhängig < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren linear unabhängig: Allgemeine Frage
Status: (Frage) beantwortet Status 
Datum: 15:24 Mi 09.05.2012
Autor: Jack159

Hallo,

Wenn man z.b. 3 Vektoren gegeben hat und nun prüfen möchte/muss, ob diese 3 Vektoren voneinander linear unabhängig sind, muss man ja ein Gleichungsysten mit 3 Unbekannten lösen, wovon alle 3 Unbekannten 0 sein müssen. (Etwas grob nur erklärt, aber ihr wisst denke ich was ich meine).

Frage:
Geht das auch irgendwie kürzer/schneller/weniger aufwändiger?
Klar, je nach dem wie die 3 Vektoren aussehen, sieht man es ihnen sofort an, dass sie linear unabhängig sind, aber das ist ja nicht immer der Fall.

Hintergrund:
Ich habe einige Aufgaben zu lösen, in denen ich Matrix*Vektor1=Vektor2 habe, wovon alles bekannt ist, außer Vektor 1, welchen ich berechnen soll, mithilfe des Gauß-Verfahrens. (Das ist alles kein Problem).
Anschließend soll ich noch den Rang der Matrix bestimmen (Also die Anzahl der linear unabhängigen Vektoren der Matrix).




        
Bezug
Vektoren linear unabhängig: Antwort
Status: (Antwort) fertig Status 
Datum: 15:30 Mi 09.05.2012
Autor: fred97


> Hallo,
>  
> Wenn man z.b. 3 Vektoren gegeben hat und nun prüfen
> möchte/muss, ob diese 3 Vektoren voneinander linear
> unabhängig sind, muss man ja ein Gleichungsysten mit 3
> Unbekannten lösen, wovon alle 3 Unbekannten 0 sein
> müssen. (Etwas grob nur erklärt, aber ihr wisst denke ich
> was ich meine).
>  
> Frage:
> Geht das auch irgendwie kürzer/schneller/weniger
> aufwändiger?

In dieser Allgemeinheit ist Deine Frage nicht zu beantworten.

Wenn es sich z.B. um 3 Vektoren aus [mm] \IR^3 [/mm] handelt, kannst Du die Vektoren in eine Matrix stellen und die Determinante dieser Matrix berechnen. Ist die Det. [mm] \ne [/mm] 0 , so sind die Vektoren l.u., anderenfalls l.a.

FRED

>  Klar, je nach dem wie die 3 Vektoren aussehen, sieht man
> es ihnen sofort an, dass sie linear unabhängig sind, aber
> das ist ja nicht immer der Fall.
>  
> Hintergrund:
>  Ich habe einige Aufgaben zu lösen, in denen ich
> Matrix*Vektor1=Vektor2 habe, wovon alles bekannt ist,
> außer Vektor 1, welchen ich berechnen soll, mithilfe des
> Gauß-Verfahrens. (Das ist alles kein Problem).
>  Anschließend soll ich noch den Rang der Matrix bestimmen
> (Also die Anzahl der linear unabhängigen Vektoren der
> Matrix).
>
>
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Abbildungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]