www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektoren x und y berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Vektoren" - Vektoren x und y berechnen
Vektoren x und y berechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektoren x und y berechnen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 14:57 Do 15.11.2007
Autor: replicant

Aufgabe
Man berechne x und y aus

x [mm] \pmat{ 1 \\ 1 } [/mm] + y [mm] \pmat{ 2 \\ -1 } [/mm] = [mm] \pmat{ 1 \\ 4 } [/mm]  

Hallo Matheraum!

Ich bin in Mathe noch nicht so ganz fit und ich bräuchte hilfe bei dieser scheinbar einfachen Aufgabe. Es wäre toll wenn mir das mal jemand exemplarisch vorrechnen könnte, wenn ich mal sehe wie das gemacht wird kann ich meine anderen Aufgaben sicher auch selber rechnen :)

Gruß!


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Vektoren x und y berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:18 Do 15.11.2007
Autor: Blech



[mm] $x\pmat{ 1 \\ 1 }+ [/mm] y [mm] \pmat{ 2 \\ -1 }= \pmat{ 1 \\ 4 }$ [/mm]

x und y sollen Skalare (="(reelle) Zahlen", im Gegensatz zu "Vektoren") sein;
Du multiplizierst einen Vektor mit einem Skalar, indem Du alle Einträge des Vektors (Koeffizienten) mit dem Skalar multiplizierst:
[mm] $4\pmat{1\\1}=\pmat{4\\4};\quad 3\pmat{3\\-6}=\pmat{3*3\\3*(-6)}=\pmat{9\\-18};\quad 2\pmat{1\\3}=\pmat{2*1\\2*3}=\pmat{2\\6}$ [/mm]

D.h.:
[mm] $x\pmat{ 1 \\ 1 }+ [/mm] y [mm] \pmat{ 2 \\ -1 }= \pmat{ 1*x \\ 1*x }+ \pmat{ 2*y \\ -1*y }$ [/mm]

Du addierst Vektoren, indem Du die jeweiligen Koeffizienten (1. Eintrag des ersten Vektors zu 1. Eintrag des zweiten, 2. Eintrag des ersten zu 2. Eintrag des zweiten, 3. zu 3., usw., aber wir haben hier nur 2) addierst:
[mm] $\pmat{ 1 \\ 1 } +\pmat{ 1 \\ 1 }=\pmat{ 2 \\ 2 };\quad \pmat{ 3 \\ 5 } +\pmat{ 6 \\ 2 } =\pmat{ 3+6 \\ 5+2 } =\pmat{ 9 \\ 7 } [/mm]   $

D.h.
[mm] $\pmat{ 1*x \\ 1*x }+ \pmat{ 2*y \\ -1*y }=\pmat{ 1*x+2*y \\ 1*x-1*y }=\pmat{ x+2y \\ x-y }$ [/mm]

Zwei Vektoren sind gleich, wenn die jeweiligen Koeffizienten übereinstimmen:
[mm] $\pmat{ 9 \\ 7 }=\pmat{ 9 \\ 7 };\quad \pmat{ a \\ 2b }=\pmat{ 4 \\ 8 }\ \Rightarrow [/mm] a=4,\ 2b=8\ [mm] \Rightarrow [/mm] a=4, b=4$

Und damit haben wir:
[mm] $x\pmat{ 1 \\ 1 }+ [/mm] y [mm] \pmat{ 2 \\ -1 }= \pmat{ x+2y \\ x-y }=\pmat{ 1 \\ 4 }$ [/mm]
genau dann, wenn:
x+2y=1
x-y=4

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]