www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGeraden und EbenenVektorenrechnung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Geraden und Ebenen" - Vektorenrechnung
Vektorenrechnung < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorenrechnung: Auflösungsproblem
Status: (Frage) beantwortet Status 
Datum: 11:01 Di 11.03.2008
Autor: sabs89

Aufgabe
Gegeben sind Gleichungen der Ebenen E1 und E2. Bestimmen Sie E1 [mm] \cap [/mm] E2. Wenn E1 und E2 sich schneiden, so ist eine Gleichung der Schnittgeraden anzugeben.

E1: [mm] x\to [/mm] =       2              3             5
          vektor 1  +S1  vektor 0 +t1 vektor -1  
                 4             -2             4
          
                   0             1               1
E2: [mm] x\to [/mm] = vektor  2  +S2 vektor 1  +t2 vektor  -2
                  -2            -8              14

Leider wusste ich nicht, viel ich die Vektorenklammern hier mit der Tastatur darstellen kann. Ich hoffe ihr versteht, was ich mit der Aufgabenstellung meine.

Mein Problem ist es, die Aufgabe nachher aufzulösen. Ich habe soweit alles ausgerechnet:

3s1 + 5t1 -s2 - t2   = -2
    - t1  -s2 +2t2   =  1
-2s1+ 4t1 +8s2-14t2  = -6

s     t    u     v
3     5    -1    -1      -2   /*2 + Gleichung 3
0    -1    -1     2       1
-2    4     8   -14      -6   /*3
_______________________________________
3     5    -1    -1      -2
0    -1    -1     2       1   /*22 +Gleichung 3
0    22    22   -44     -22
_______________________________________
3     5    -1    -1      -2
0    -1    -1     2       1
0     0     0     0       0

ich hoffe ihr könnt mir soweit folgen.
Jetzt löse ich auf:

-t  -u  +2v    = 1   Hier verstehe ich nicht, warum ich
-1  -u  +2v    = t   gerade nach t auflösen muss.

3s  + 5 (-1u +2v) -u - v  = -2
Hier ist mein größtes Problem. Warum löse ich jetzt aufeinmal nach s auf und wie komme ich auf diese -1u in der Klammer?
Im folgndem Schritt geht es weiter:
3s = -2 +5 +5u - 10v +u +v
Wie komme ich auf diese Gleichung?

Danke schonmal im vorraus!
Liebe Grüße
Sabrina

        
Bezug
Vektorenrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 11:33 Di 11.03.2008
Autor: Tyskie84

Hallo sabs!



> Gegeben sind Gleichungen der Ebenen E1 und E2. Bestimmen
> Sie E1 [mm]\cap[/mm] E2. Wenn E1 und E2 sich schneiden, so ist eine
> Gleichung der Schnittgeraden anzugeben.
>  
> E1: [mm]x\to[/mm] =       2              3             5
>            vektor 1  +S1  vektor 0 +t1 vektor -1  
> 4             -2             4
>            
> 0             1               1
>  E2: [mm]x\to[/mm] = vektor  2  +S2 vektor 1  +t2 vektor  -2
>                    -2            -8              14
>  Leider wusste ich nicht, viel ich die Vektorenklammern
> hier mit der Tastatur darstellen kann. Ich hoffe ihr
> versteht, was ich mit der Aufgabenstellung meine.
>  
> Mein Problem ist es, die Aufgabe nachher aufzulösen. Ich
> habe soweit alles ausgerechnet:
>  
> 3s1 + 5t1 -s2 - t2   = -2
>      - t1  -s2 +2t2   =  1
>  -2s1+ 4t1 +8s2-14t2  = -6
>  
> s     t    u     v
>   3     5    -1    -1      -2   /*2 + Gleichung 3
>   0    -1    -1     2       1
>   -2    4     8   -14      -6   /*3
>  _______________________________________
>   3     5    -1    -1      -2
>   0    -1    -1     2       1   /*22 +Gleichung 3
>   0    22    22   -44     -22
>  _______________________________________
>   3     5    -1    -1      -2
>   0    -1    -1     2       1
>   0     0     0     0       0
>  

[ok]

> ich hoffe ihr könnt mir soweit folgen.
>  Jetzt löse ich auf:
>  
> -t  -u  +2v    = 1   Hier verstehe ich nicht, warum ich
> -1  -u  +2v    = t   gerade nach t auflösen muss.
>  

[notok] du hast dich etwas vertan es muss 1-u+2v=t heissen. Warum du nach t auflöst? Das ist dir frei überlassen du kannst auch nach u oder auch nach v auflösen das ist egal.

> 3s  + 5 (-1u +2v) -u - v  = -2

das ist nicht ganz richtig!
Es muss 3s+5(-u+2v+1)-u-v=-2 heissen. Beachte -1u=-u das ist ja das selbe. in der vorherigen gleichung hast du nach t aufgelöst und das ganze setzt du jetzt in die erste Gleichung ein und löst auf.

> Hier ist mein größtes Problem. Warum löse ich jetzt
> aufeinmal nach s auf und wie komme ich auf diese -1u in der
> Klammer?
>  Im folgndem Schritt geht es weiter:
>  3s = -2 +5 +5u - 10v +u +v

Auf die gleichung kommst du indem du nach s auflöst. Hier muss es aber 3s=-2-5+5u-10v+u+v heissen und dann noch zusammenfassen.

>  Wie komme ich auf diese Gleichung?
>  
> Danke schonmal im vorraus!
>  Liebe Grüße
>  Sabrina

[cap] Gruß


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Geraden und Ebenen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]