www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - SkalarprodukteVektorensumme
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Skalarprodukte" - Vektorensumme
Vektorensumme < Skalarprodukte < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorensumme: Aufgabe16
Status: (Frage) beantwortet Status 
Datum: 13:06 Sa 25.10.2008
Autor: xPae

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

hallo nochmal,

habe schon wieder ein Vektor-problem - liegt mir nicht so ^^.

[mm] \overrightarrow{a}= \vektor{3 \\ -2 \\ 7 } [/mm]

Zerlegen Sie Vektor [mm] \overrightarrow{b} [/mm] = [mm] \vektor{14 \\ 15 \\ 16 } [/mm]
so in eine Vektorsumme [mm] \overrightarrow{b} [/mm] = [mm] \overrightarrow{x} [/mm]  + [mm] \overrightarrow{u} [/mm]  , wobei [mm] \overrightarrow{x} [/mm] prallel zu [mm] \overrightarrow{a} [/mm] und [mm] \overrightarrow{u} [/mm]    senkrecht auf [mm] \overrightarrow{a} [/mm] .

Habe für a)

[mm] \overrightarrow{x} \parallel \overrightarrow{a} [/mm]

also:
[mm] \parallel \overrightarrow{a} \parallel [/mm] = [mm] \parallel \overrightarrow{x} \parallel [/mm]
[mm] \parallel \overrightarrow{a} \parallel [/mm] = [mm] \wurzel{62} [/mm]

=> [mm] \parallel \overrightarrow{b * \lambda } \parallel [/mm] = [mm] \wurzel{62} [/mm]

bekomme dann für [mm] \lambda [/mm] = [mm] \wurzel{62/ 677} [/mm]

und des passt leider net =/

für b wollte ich einfach dann  [mm] \overrightarrow{x} [/mm] von [mm] \overrightarrow{b} [/mm] abziehen.

da gilt
[mm] \overrightarrow{a} [/mm] * [mm] \overrightarrow{u} [/mm] = 0 weil cos 90°

danke für Hilfe

Gruß

        
Bezug
Vektorensumme: Antwort
Status: (Antwort) fertig Status 
Datum: 13:32 Sa 25.10.2008
Autor: Teufel

Hi und Willkommen!

Mit Beträgen würde ich da gar nichts machen!

[mm] \vec{x} [/mm] || [mm] \vec{a} [/mm] heißt ja: [mm] \vec{x}=k*\vec{a}. [/mm] Und das könntest du schon direkt in die Gleichung einsetzen.

Und [mm] \vec{u}\perp\vec{a} [/mm] heißt dann: [mm] \vec{u}*\vec{a}=0, [/mm] ist richtig.
Wenn du [mm] \vec{u}=\vektor{a \\ b \\ c} [/mm] setzt (denn du kennst seine Komponenten ja noch nicht), dann erhälst du daraus (mit dem Skalarprodukt) 3a-2b+7c=0.
Jetzt könntest du [mm] \vec{u}=\vektor{\bruch{2b-7c}{3} \\ b \\ c} [/mm] setzen und das dann auch in deine Ausgangsformel schreiben.
(gibt es dabei Probleme? Kannst ja mal [mm] \vec{u}*\vec{a} [/mm] rechnen und es wird immer 0 rauskommen!)

Also musst du nun lösen:

[mm] \vektor{14 \\ 15 \\ 16}=k*\vektor{3 \\ -2 \\ 7}+\vektor{\bruch{2b-7c}{3} \\ b \\ c}. [/mm]

[anon] Teufel

Bezug
                
Bezug
Vektorensumme: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:56 Sa 25.10.2008
Autor: xPae

Danke für die schnelle Hilfe, habe jetzt mal gerechnet.

also
14= 3k + [mm] \bruch{32b-7c}{3} [/mm]
15= - 2k + b
16= 7k + c

II. mit [mm] \bruch{2}{3} [/mm] mal genommen und - I
III. mit [mm] \bruch{7}{3} [/mm] und - I

=> [mm] \bruch{124}{3} [/mm] = 18 k
k = [mm] \bruch{\bruch{124}{3}}{18} [/mm]
dann k eingesetzt somit ergibt sich für b= [mm] 15-(-2*\bruch{\bruch{124}{3}}{18} [/mm] ) für c = [mm] 16-(7*\bruch{\bruch{124}{3}}{18}) [/mm] und für a

dann c und b eingestezt in [mm] \bruch{2a - 7c}{3} \approx [/mm] 13

somit ist [mm] \overrightarrow{u}= \vektor{13 \\ 15-(-2*\bruch{\bruch{124}{3}}{18} ) \\ 16-(7*\bruch{\bruch{124}{3}}{18}) } [/mm]
[mm] \approx \vektor{13 \\ 19,6 \\ 0,07 } [/mm]
Prüfung:  
[mm] \overrightarrow{a} [/mm] * [mm] \overrightarrow{u} [/mm] = 39-39 = 0 passt.

für [mm] \overrightarrow{x} [/mm] einfach k * [mm] \overrightarrow{a} \approx [/mm]

[mm] \vektor{6,9 \\ -4,6 \\ 16,1} [/mm]  

Nun passt aber [mm] \overrightarrow{x} [/mm] + [mm] \overrightarrow{u} [/mm] = [mm] \overrightarrow{b} [/mm] bei der x(a)- Komponenten nicht mehr. (anderen schon)
was hab ich falsch gemacht?

gruß vielen dank

Bezug
                        
Bezug
Vektorensumme: Antwort
Status: (Antwort) fertig Status 
Datum: 15:13 Sa 25.10.2008
Autor: Teufel

Hm also du hast da [mm] 14=3k+\bruch{\red{3}2b-7c}{3} [/mm] zu stehen, aber die 3 war nur aus Versehen, oder?

Und dann könntest du so fortfahren:

[mm] \bruch{3}{2}*II+I [/mm] und [mm] -\bruch{7}{2}*III+I [/mm]

Du hast 2mal Minus gerechnet, obwohl bei II ja schon ein Minus vor dem k steht! Und du hast mit den Kehrwerten gerechnet.
[mm] 2*\bruch{2}{3}=\bruch{4}{3}, [/mm] und dann fällt das k ja nicht weg!

Kannst ja nochmal durchrechnen, es kommen auch ganze Zahlen raus, sodass man da nicht mit Brüchen rumfrickeln muss.

[anon] Teufel

Bezug
                                
Bezug
Vektorensumme: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:01 Sa 25.10.2008
Autor: xPae

danke für die Hilfe, hab jetzt einfahc II nach b und III nach c aufgelöst und dann in I eingestezt passt, danke

gruß, schönen tag noch

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Skalarprodukte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]