www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikVektorfeld
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Physik" - Vektorfeld
Vektorfeld < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfeld: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:21 Di 15.05.2007
Autor: Phecda

hi eine frage zum vektorfeld:
Ein Vektorfeld v ist doch ein Gradientenfeld wenn rot v= 0 ist. Diese Aussage hat eine äquivalente Form d.h. wenn rot v = 0 dann ist v ein Gradientenfeld.
Ist das so richtig?

Oder stimmt das nur wenn v in einem einfach zusammenhängendem Gebiet liegt?

Kann mir jmd genau sagen wie das genau ist?
und noch eine Frage
wie erkenne ich denn ein zusammenhängendes Gebiet ohne jetzt bsp mir den Vektor in Derive zu zeichnen und zu schauen ob da ein Loch vorkommt. gibt es da einen mathematischen rechenweg..
(Das ganze erinnert mich an Polstellen bei gebrochenrationalen Funktion aus der Schule. gibt es beim vektorfeld auch einen rechneweg zu überprüfen wo sich ein loch befindet?)

Danke
mfg Phecda

        
Bezug
Vektorfeld: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Di 15.05.2007
Autor: leduart

Hallo Phecda
> hi eine frage zum vektorfeld:
>  Ein Vektorfeld v ist doch ein Gradientenfeld wenn rot v= 0
> ist. Diese Aussage hat eine äquivalente Form d.h. wenn rot
> v = 0 dann ist v ein Gradientenfeld.
>  Ist das so richtig?

eigentlich ist es umgekehrt, man nennt ein vektorfeld ein Gradientenfeld, wenn es grad eines skalaren "Feldes" ist.
Was du hingeschrieben hast sind dann notwendige Bedingungen.  

> Oder stimmt das nur wenn v in einem einfach
> zusammenhängendem Gebiet liegt?

wenn du v auf einfach zusammenhängende Gebiete beschränkst, wird die notwendige bedingung hinreichend.

> Kann mir jmd genau sagen wie das genau ist?
>  und noch eine Frage
>  wie erkenne ich denn ein zusammenhängendes Gebiet ohne
> jetzt bsp mir den Vektor in Derive zu zeichnen und zu
> schauen ob da ein Loch vorkommt. gibt es da einen
> mathematischen rechenweg..

Genau wie an den Polen, ist das Vektorfeld in einem Punkt nicht definiert, oder nicht differenzierbar, , insofern entspricht es den Polen. Du hattest doch grad in einem der früheren posts und in Wiki ein Beispiel.
die Ableitungen und rot sind lokale Eigenschaften, die überall, erfüllt sein können oder nicht überall. und die richtige Formulierung ist wenn rot ÜBERALL =0 ist (dazu muss es natürlich auch existieren) oder wenn JEDES geschlossene Wegintegral 0 ist.
Gruss leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]