www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferentiationVektorfeld=Gradientenfeld?
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Differentiation" - Vektorfeld=Gradientenfeld?
Vektorfeld=Gradientenfeld? < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorfeld=Gradientenfeld?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:49 Sa 15.11.2014
Autor: Teryosas

Aufgabe
Handelt es sich bei den Vektorfeldern
a) F: [mm] \IR^3 \to \IR^3, (x,y,z)\mapsto(z,x,y) [/mm]
b) F: [mm] \IR^3 \to \IR^3, (x,y,z)\mapsto(yz, [/mm] zx, xy)
um Gradientenfelder? Bestimmen Sie gegebenenfalls die Potentiale

Hey,
Als erstes hoffe ich das mit dem Thema hier im Thread richtig bin?
Falls nicht dürft ihr mich gerne drauf aufmerksam machen/verschieben.

Wir haben nun ein neues Thema und bin mal gespannt ob ich das verstanden hab^^
Wir sollen bestimmen ob es sich bei Vektorfeldern um Gradientenfelder handelt.
Bei [mm] \IR^2 [/mm] ist es ja noch relativ einfach für F(x,y) = [mm] \vektor{x\\y} [/mm]
Ich vergleiche ob die partiellen Ableitungen gleich sind
[mm] \bruch{\partial F_{1}}{\partial y} [/mm] = 0 = [mm] \bruch{\partial F_{2}}{\partial x} [/mm]
Also von dem den x-Wert nach y ableiten und den y-Wert nach x ableiten

Bei [mm] \IR^3 [/mm] scheint das wohl ein bisschen umfangreicher zu sein, daher habe ich mal 2 Beispiele mitgebracht.

zu a)
es muss gelten:
[mm] \bruch{\partial F_{1}}{\partial y}=\bruch{\partial F_{2}}{\partial x} [/mm]
und
[mm] \bruch{\partial F_{1}}{\partial z}=\bruch{\partial F_{3}}{\partial x} [/mm]
und
[mm] \bruch{\partial F_{2}}{\partial z}=\bruch{\partial F_{3}}{\partial y} [/mm]

Hier ist kein Gradientenfeld vorhanden, da :
0 [mm] \not= [/mm] 1
und
1 [mm] \not= [/mm] 0
und
0 [mm] \not= [/mm] 1
Hier ist jede der 3 Bedingungen nicht erfüllt.
entsprechend gäbe es auch kein Potential

b)
Hier gibt es ein Gradientenfeld, da:
z=z
und
y=y
und
x=x

Hier gibt es nun auch ein Potential. Im Folgenden werde ich versuchen dieses herauszufinden:
Das Vektorfeld kürze ich ab hier mit [mm] \vec{v} [/mm] ab und das Potential nenne ich p.

Es muss gelten: [mm] \vec{v} [/mm] = -grad p
Daraus ergibt sich:
[mm] \vektor{yz \\ zx \\ xy} [/mm] = - [mm] \vektor{\bruch{\partial p(x,y,z)}{\partial x}\\ \bruch{\partial p(x,y,z)}{\partial y} \\ \bruch{\partial p(x,y,z)}{\partial z}} [/mm]

Ab Hier weiß ich allerdings nicht genau weiter...
kann mir da vllt bitte jemand weiterhelfen?

        
Bezug
Vektorfeld=Gradientenfeld?: Antwort
Status: (Antwort) fertig Status 
Datum: 14:58 Sa 15.11.2014
Autor: leduart

Hallo
du weisst [mm] \bruch{\partial p}{\partial x}=yz [/mm]
[mm] p=\integral [/mm] yzdx=xyz+C(y,z)
damit [mm] \bruch{\partial p}{\partial y}= xz+\bruch{\partial C(y,z)}{\partial y}=zx [/mm]
damit [mm] p=xyz+C_1(z) [/mm]
jetzt noch [mm] \bruch{\partial p}{\partial z} [/mm] und du hast das Potential, das man hier auch leicht raten konnte
P=x*y*z+C
fas Vorgehen hab ich nur gezeigt, weil man nicht immer P so leicht raten und dann bestätigen kann.
Gruß leduart


Bezug
                
Bezug
Vektorfeld=Gradientenfeld?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:01 Sa 15.11.2014
Autor: Teryosas

Alles kla Danke.
glaub das hab ich dann raus.
Man muss praktisch zusehen dass das c nicht mehr von etwas abhängig ist.

Danke!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]