www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorräume
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorräume
Vektorräume < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume: Tipp,Korrektur
Status: (Frage) beantwortet Status 
Datum: 12:46 Mo 08.12.2014
Autor: Martin_Ph

Aufgabe
Sei W eine Teilmenge eines Vektorraumes V. Zeigen Sie, dass die Bedingung
u,v [mm] \in [/mm] W [mm] \Rightarrow \alpha [/mm] u + [mm] \beta [/mm] v [mm] \in [/mm] W, [mm] \alpha,\beta \in\IR [/mm]
ausreicht, damit W ein Untervektorraum von V ist

Hier mal meine Lösung dazu:

Sei [mm] u,v\in [/mm] W [mm] \wedge \alpha,\beta\in\IR [/mm]

[mm] \alpha u+\beta v=\alpha\summe_{i=0}^{n}u_{i}x^{i}+\beta\summe_{i=0}^{n}v_{i}x^{i}=\summe_{i=0}^{n}\alpha*u_{i}x^{i}+\summe_{i=0}^{n}\beta*v_{i}x^{i}=\summe_{i=0}^{n}\alpha*u_{i}x^{i}+\beta*v_{i}x^{i}=\summe_{i=0}^{n}(\alpha*u_{i}+\beta*v_{i})*x^{i} \in [/mm] W

So, meine Frage ist nun eigentlich ob ich mit dieser Rechnung nun bewiesen hab das W ein Untervektorraum ist oder nicht?
Eig habe ich ja nur nachgerechnet dass [mm] \alpha*u+\beta*v \in [/mm] W ist
Und da W Teilmenge von V ist ist es somit ein Untervektorraum?????

Was muss man zeigen damit W Unterraum von V ist?


        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 13:03 Mo 08.12.2014
Autor: fred97


> Sei W eine Teilmenge eines Vektorraumes V. Zeigen Sie, dass
> die Bedingung
>  u,v [mm]\in[/mm] W [mm]\Rightarrow \alpha[/mm] u + [mm]\beta[/mm] v [mm]\in[/mm] W,
> [mm]\alpha,\beta \in\IR[/mm]
>  ausreicht, damit W ein Untervektorraum
> von V ist
>  Hier mal meine Lösung dazu:
>  
> Sei [mm]u,v\in[/mm] W [mm]\wedge \alpha,\beta\in\IR[/mm]
>  
> [mm]\alpha u+\beta v=\alpha\summe_{i=0}^{n}u_{i}x^{i}+\beta\summe_{i=0}^{n}v_{i}x^{i}=\summe_{i=0}^{n}\alpha*u_{i}x^{i}+\summe_{i=0}^{n}\beta*v_{i}x^{i}=\summe_{i=0}^{n}\alpha*u_{i}x^{i}+\beta*v_{i}x^{i}=\summe_{i=0}^{n}(\alpha*u_{i}+\beta*v_{i})*x^{i} \in[/mm]
> W

Ich vermute, dass Du angenommen hast, dass die [mm] x^i [/mm] eine Basis von W bilden.

Wenn Du das tust setz Du aber schon voraus, dass W ein Untervektorraum ist. Weiter setzt Du auch noch voraus, das dimW < [mm] \infty [/mm] ist.

So kannst Du das also nicht machen.


>  
> So, meine Frage ist nun eigentlich ob ich mit dieser
> Rechnung nun bewiesen hab das W ein Untervektorraum ist
> oder nicht?
>  Eig habe ich ja nur nachgerechnet dass [mm]\alpha*u+\beta*v \in[/mm]
> W ist
>  Und da W Teilmenge von V ist ist es somit ein
> Untervektorraum?????
>  
> Was muss man zeigen damit W Unterraum von V ist?

Du hast die Bedingung
u,v $ [mm] \in [/mm] $ W $ [mm] \Rightarrow \alpha [/mm] $ u + $ [mm] \beta [/mm] $ v $ [mm] \in [/mm] $ W, $ [mm] \alpha,\beta \in\IR [/mm] $.

Zeige nun, dass aus dieser Bedingung folgt, dass W das Untervektorraumkriterium erfüllt.

FRED

>  


Bezug
                
Bezug
Vektorräume: Kriterien Untervektorraum
Status: (Frage) überfällig Status 
Datum: 14:39 Mo 08.12.2014
Autor: Martin_Ph

Aufgabe
siehe Vorherige

Reicht es dann hier zu sagen dass W in Bezug auf Vektoraddition und Skalarmultiplikation abgeschlossen ist, aufgrund der Bedingung?

Diese Abgeschlossenheit haben wir auch schon in einer anderen Aufgabe bewiesen, sprich ich muss es dann doch hier nicht nocheinmal zeigen oder?

Wenn ich jetzt sage

[mm] \alpha=\beta=0 \Rightarrow [/mm] 0*u+0*v=0 [mm] \Rightarrow 0\in [/mm] W [mm] \Rightarrow W\not=\emptyset [/mm]

müsste doch alles bewiesen sein

Bezug
                        
Bezug
Vektorräume: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:20 Fr 12.12.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:31 Fr 12.12.2014
Autor: angela.h.b.


> Sei W eine Teilmenge eines Vektorraumes V. Zeigen Sie, dass
> die Bedingung
> u,v [mm]\in[/mm] W [mm]\Rightarrow \alpha[/mm] u + [mm]\beta[/mm] v [mm]\in[/mm] W,
> [mm]\alpha,\beta \in\IR[/mm]
> ausreicht, damit W ein Untervektorraum
> von V ist

Hallo,

ist das der Originaltext?
Oder hast Du ihn etwas abgewandelt?
Sofern nämlich [mm] W=\emptyset, [/mm] wird man das nicht zeigen können...

> Hier mal meine Lösung dazu:

Hmmmm.
Du arbeitest hier offenbar irgendwie im Vektorraum der Polynome.
In der Aufgabenstellung steht nichts dergleichen, so daß ich denke, daß Du völlig auf der falschen Spur bist.

Auf den richtigen Pfad kannst Du nur kommen, wenn Du Dir mal anschaust, wie Ihr "Untervektorraum " überhaupt definiert habt.
Daß alles, was in dieser Definition vorkommt, zutrifft, wäre in dieser Aufgabe zu zeigen.

LG Angela


>

> Sei [mm]u,v\in[/mm] W [mm]\wedge \alpha,\beta\in\IR[/mm]

>

> [mm]\alpha u+\beta v=\alpha\summe_{i=0}^{n}u_{i}x^{i}+\beta\summe_{i=0}^{n}v_{i}x^{i}=\summe_{i=0}^{n}\alpha*u_{i}x^{i}+\summe_{i=0}^{n}\beta*v_{i}x^{i}=\summe_{i=0}^{n}\alpha*u_{i}x^{i}+\beta*v_{i}x^{i}=\summe_{i=0}^{n}(\alpha*u_{i}+\beta*v_{i})*x^{i} \in[/mm]
> W

>

> So, meine Frage ist nun eigentlich ob ich mit dieser
> Rechnung nun bewiesen hab das W ein Untervektorraum ist
> oder nicht?
> Eig habe ich ja nur nachgerechnet dass [mm]\alpha*u+\beta*v \in[/mm]
> W ist
> Und da W Teilmenge von V ist ist es somit ein
> Untervektorraum?????

>

> Was muss man zeigen damit W Unterraum von V ist?

>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]