www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorräume
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Lineare Algebra" - Vektorräume
Vektorräume < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:42 Di 11.12.2007
Autor: Tyskie84

Aufgabe

V,W seien endlichdimensionale VR über [mm] \IK [/mm]

1. Eine lineare Abbildung f: V [mm] \to [/mm] W ist genau dann injektiv, wenn Kerf = {0}
2. Für f: V [mm] \to [/mm] W linear gilt: dimV=dimKerf - rangf
3. Eine lineare Abbildung f: V [mm] \to [/mm] W ist genau dann injektiv, wenn sie surjektiv ist.
4. Für A [mm] \in [/mm] M( m [mm] \times [/mm] n, [mm] \IK) [/mm] gilt: rangA [mm] \le [/mm] m
5. Für A [mm] \in [/mm] M( m [mm] \times [/mm] n, [mm] \IK) [/mm] gilt: rangA [mm] \ge [/mm] n
6. Für A [mm] \in [/mm] M( m [mm] \times [/mm] n, [mm] \IK) [/mm] gilt: rangA [mm] \le [/mm] n

Hallo zusammen. Muss diese multiple choice aufgaben beantworten.

Zu 1)
f injektiv [mm] \Rightarrow [/mm] Kerf = {0}: es gibt ja nur ein Element das auf die 0 abbildet und das ist die 0 selbst

Kerf = {0} [mm] \Rightarrow [/mm] f injektiv: x,y [mm] \in [/mm] V geg mit f(x)=f(y) Dann f(x-y) = f(x)-f(y)=0  [mm] \Rightarrow [/mm] x-y = 0 [mm] \in [/mm] Kerf = {0}
[mm] \Rightarrow [/mm] x=y

Damit ist 1 WAHR

Zu 2) Das ist FALSCH denn damit wäre die Dimensionsforlel nicht erfüllt.

Zu 3) f ist bijektiv [mm] \gdw [/mm] f ist injektiv [mm] \gdw [/mm] fist surjektiv. Das gilt in endlichdimensionalen Vektorräumen damit ist die Aussage WAHR

Zu 4) 5) und 6)
der Rang von A = dimIm(A) hier ist 4 und 6 WAHR die 5 ist FALSCH
denn der RangA [mm] \le [/mm] min{m,n} auch nach der Dimensionsformel gilt RangA= dim [mm] \IK^{n} [/mm] - dimKerA [mm] \le [/mm] n und ImA [mm] \subset \IK^{m} \Rightarrow [/mm] RangA [mm] \le [/mm] m

Ist das richtig so??

[cap] Gruß

        
Bezug
Vektorräume: Antwort
Status: (Antwort) fertig Status 
Datum: 16:12 Di 11.12.2007
Autor: angela.h.b.


> Ist das richtig so??

Ja.

Gruß v. Angela

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]