www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorräume,Unterräume,Basen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Lineare Algebra" - Vektorräume,Unterräume,Basen
Vektorräume,Unterräume,Basen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorräume,Unterräume,Basen: HILFE : Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:36 Di 16.11.2004
Autor: cloudlet

Hallo, Leute!
Ich habe große Schwierigkeiten, wie ich zu dieser Aufgabe rangehen und lösen kann.
Die Aufgabe lautet: Welche der folgenden Teilmengen des Vektorraums  [mm] \IQ^{4} [/mm] sind Unterräume von [mm] \IQ^{4}? [/mm] Geben Sie eine Basis von U an, wenn U ein Unterraum ist.
a) [mm] U={(k_{1},k_{2},k_{3},k_{4}) | k_{1} = 0} [/mm]
b) [mm] U={(k_{1},k_{2},k_{3},k_{4}) | k_{1} = 1} [/mm]
c) [mm] U={(k_{1},k_{2},k_{3},k_{4}) | k_{1} - k_{2}+3k_{3}- 2k_{4}=0} [/mm]
d) [mm] U={(k_{1},k_{2},k_{3},k_{4}) | k_{1}^{2} =k_{2}^{2}} [/mm]

Ich habe im Buch 2 Beispiele gefunden, die mit meinen b) und d) ähnlich sind.Es folgte, die sind keine Unterräume, stand aber keine Erklärung dazu: warum? Über Beweise für alle 4 Unteraufgaben würde ich sehr freuen

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt

        
Bezug
Vektorräume,Unterräume,Basen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:14 Di 16.11.2004
Autor: BigFella

zu b) Naja versuch dir das mal vorzustellen... ok vierdimensional ist etwas dumm... aber dann machen wir es eben dreidimensional.. dann ist das doch genau eine hyperebene..und die kann kein Unterraum sein, weil sie ja schonmal nicht die Null enthält.. allgemein versuche einfach die (Unter)Vektorraumaxiome zu überprüfen, dann siehst du bestimmt auch, dass die letzte die mit einem Quadrat Probleme macht..

Bezug
                
Bezug
Vektorräume,Unterräume,Basen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:25 Di 16.11.2004
Autor: baskolii

b)+d) U nicht abgeschl. bezügl. Add, also kein Untervektorraum
a) U Unterraum mit Basis [mm] {e_2,e_3,e_4} [/mm]
c) ist glaub ich Unterraum

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]