www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorraum, Basis, Koordinaten
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum, Basis, Koordinaten
Vektorraum, Basis, Koordinaten < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum, Basis, Koordinaten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 02:50 So 20.06.2010
Autor: ChopSuey

Hallo,

bei Folgendem habe ich irgendwo einen Denkfehler, den ich nicht finden kann:

Angenommen ich habe einen Untervektorraum $\ U $ des $\ [mm] \IR^4 [/mm] $ mit $\ U = [mm] span(u_1,u_2,...,u_m) [/mm] $ und die Basis von $\ U $ besteht aus nun aus 3 Vektoren.

Also  $\ dim \ U = 3 $. Nun ist ja $\ U $ zugleich ein Vektorraum und somit isomorph zum $ [mm] \IR^3 [/mm] $ bzgl der Abbildung $\ [mm] \kappa_B [/mm] : U [mm] \to \IR^3, [/mm] \ u [mm] \mapsto [u]_B [/mm] = [mm] \vektor{\lambda_1 \\ \lambda_2 \\ \lambda_3} \in \IR^3 [/mm] $

Doch das funktioniert wiederum nicht, da jedes Element aus $\ U $ 4 komponenten hat.

Wo liegt mein Denkfehler? [aeh]

Grüße
ChopSuey

        
Bezug
Vektorraum, Basis, Koordinaten: Antwort
Status: (Antwort) fertig Status 
Datum: 05:11 So 20.06.2010
Autor: angela.h.b.


> Hallo,
>  
> bei Folgendem habe ich irgendwo einen Denkfehler, den ich
> nicht finden kann:
>  
> Angenommen ich habe einen Untervektorraum [mm]\ U[/mm] des [mm]\ \IR^4[/mm]
> mit [mm]\ U = span(u_1,u_2,...,u_m)[/mm] und die Basis von [mm]\ U[/mm]
> besteht aus nun aus 3 Vektoren.
>  
> Also  [mm]\ dim \ U = 3 [/mm]. Nun ist ja [mm]\ U[/mm] zugleich ein
> Vektorraum und somit isomorph zum [mm]\IR^3[/mm] bzgl der Abbildung
> [mm]\ \kappa_B : U \to \IR^3, \ u \mapsto [u]_B = \vektor{\lambda_1 \\ \lambda_2 \\ \lambda_3} \in \IR^3[/mm] [/u][/mm]
> [mm][u][/u][/mm]
> [mm][u]Doch das funktioniert wiederum nicht, da jedes Element aus [/u][/mm]
> [mm][u][mm]\ U[/mm] 4 komponenten hat.[/u][/mm]

Hallo,

in der Tat sind alle Elemente aus U Spaltenvektoren mit 4 Einträgen.
U ist ein VR mit der Basis  [mm] B:=(u_1, u_2, u_3), [/mm] jedes Element eine Linearkombination dieser drei  Vektoren.
Schreibst Du die Elemente dieses VRes U als Koordinatenvektoren bzgl B, dann haben sie natürlich drei Einträge.
U ist isomorph zum [mm] \IR^3. [/mm]

Du hast jetzt U als Vektorraum behandelt.
Möchtest Du U in seiner Eigenschaft als Untervektorraum des [mm] \IR^4 [/mm] betrachten, so ist jeses Element von U eine Linearkombination von 4 Basisvektoren des [mm] \IR^4. [/mm]
Ergänze [mm] (u_1, u_2, u_3) [/mm] durch einen Vektor v zu einer Basis B' des [mm] \IR^4. [/mm]

Die Koordinatenvektoren der Elemente u von U haben die Gestalt  [mm] [u]_{B'}=\vektor{\lambda_1 \\ \lambda_2 \\ \lambda_3\\0}. [/mm] Damit hast Du Deine 4 Komponenten.
Am Isomorphismus zum [mm] \IR^3 [/mm]  ändert das nichts.

[mm] \varphi: [/mm] U [mm] \to \IR^3 [/mm]
[mm] \lambda_1u_1+\lambda_2u_2+\lambda_3u_3\mapsto \vektor{\lambda_1 \\ \lambda_2 \\ \lambda_3} [/mm]
ist ein Isomorphismus.

Gruß v. Angela



Bezug
                
Bezug
Vektorraum, Basis, Koordinaten: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:56 So 20.06.2010
Autor: ChopSuey

Hallo Angela,

danke für die ausführliche Antwort!
Das hat mich gestern nicht mehr in Ruhe gelassen.

Grüße
ChopSuey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]