www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeVektorraum, Körper
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra - Moduln und Vektorräume" - Vektorraum, Körper
Vektorraum, Körper < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum, Körper: Tipp
Status: (Frage) beantwortet Status 
Datum: 13:17 Fr 07.11.2008
Autor: Bleistiftkauer

Aufgabe
Aufgabe 12: Sei $V = [mm] \IR^\IR$ [/mm] der Vektorraum der Abbildungen von [mm] $\IR$ [/mm] nach [mm] $\IR$. [/mm] Seien U und
W die folgenden zwei Untervektorr¨aume:
$U := [mm] \{f \in \IR^\IR | f(-x) = f(x) \mbox{ für alle } x \in \IR}$ [/mm]
$W := [mm] \{f \in \IR^\IR | f(-x) = -f(x) \mbox{ für alle } x \in \IR}.$ [/mm]
Zeige, dass V die direkte Summe von U und W ist, d.h. V = U + W und $U [mm] \cap [/mm] W = {0}$,
wobei 0 die Nullabbildung in [mm] $\IR^\IR$ [/mm] ist.

Aufgabe 13:
(i) Bestimme eine Basis des folgenden Untervektorraumes:

[mm] $\mbox{lin}\left\{ \begin{pmatrix}1\\7\\4 \end{pmatrix}, \begin{pmatrix}2\\ \lambda \\ 8 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \\ 9\end{pmatrix} \right\} \subseteq \IR^3 [/mm] $
(als [mm] \$IR$-Vektorraum) [/mm] in Abhängigkeit von [mm] $\lambda \in \IR$ [/mm]
.
(ii) Seien [mm] $p_1, p_2, p_3 \in \IR[/mm] [t]$ Polynome mit
[mm] $p_1(t) [/mm] = (t - 1)2$
[mm] $p_2(t) [/mm] = (t + 2)2$
[mm] $p_3(t) [/mm] = (t + 1)(t + 2)$.
Zeige, dass die Menge der Polynome [mm] $\{p_1, p_2, p_3\}$ [/mm] eine Basis des Vektorraumes aller
Polynome der Form $q(t) = [mm] a_2t^2 [/mm] + [mm] a_1t^1 [/mm] + [mm] a_0$ [/mm] mit [mm] $a_2, a_1, a_0 \in \IR$ [/mm] ist.

Aufgabe 14: Sei $n [mm] \in \IN, [/mm] p [mm] \in \IN$ [/mm] mit p prim, [mm] $\IZ_p [/mm] = [mm] \IZ/ [/mm] p [mm] \IZ$ [/mm] der Restklassenkörper mit p Elementen. Bestimme:
(i) die Anzahl der 1–dimensionalen Untervektorräume von [mm] $(\IZ_p)^n$, [/mm]
(ii) die Anzahl der Familien von Vektoren, die eine geordnete Basis (d.h. die Reihenfolge
der Vektoren spielt eine Rolle) des Vektorraumes [mm] $(\IZ_p)^n$ [/mm] bilden,
(iii) die Anzahl der k–dimensionalen Untervektorräume von [mm] $(\IZ_p)^n$ [/mm] für $k [mm] \in \{0, \ldots , n\} [/mm]

Vielleicht kann mir ja jemand sagen, was man genau in den aufgabenstellungen machen soll mit kleinen denkanstössen. normalerweise hole ich mir diese vom tutor, aber weil ich krank im bett liege geht das diese woche leider nicht. =(
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorraum, Körper: Antwort
Status: (Antwort) fertig Status 
Datum: 13:39 Fr 07.11.2008
Autor: angela.h.b.

Hallo,

bitte poste die Aufgaben 13 und 14 in jeweils einem eigenen Thread.

Beachte unseren Formeleditor, Eingabehilfen findest Du unterhalb des Eingabefensters, Klick auf "Vorschau" liefert eine Voransicht.
Spaltenvektoren, [mm] \in [/mm] , [mm] \lambda, \IR [/mm] u.v.m. ist möglich.
Die Leserlichkeit ist auch in Deinem Interesse, man wird Dir i.d.R. schneller antworten.


> Aufgabe 12: Sei V = [mm]\IR^{\IR}[/mm] der Vektorraum der
> Abbildungen von  [mm]\IR[/mm] nach  [mm]\IR.[/mm] Seien U und
>  W die folgenden zwei Untervektorr¨aume:
>  U := [mm] \{f \in \IR^{\IR} | f(-x) = f(x) für alle x \in \IR\} [/mm]
>  W := [mm] \{f \in \IR^{\IR} | f(-x) = -;f(x) f¨ur alle x \in \IR\}. [/mm]
>  Zeige, dass V die direkte Summe von U und W ist, d.h. V =
> U + W und U \ W = {0},
>  wobei 0 die Nullabbildung in [mm]\IR^{\IR}[/mm] ist.

Was die direkte Summe ist, wird in der Aufgabe ja schon gesagt:

1. Es ist die Summe
und
2. der Schnitt der beiden Summanden enthält nur die Null.

In U sind die Funktionen, die symmetrisch zur y-Achse sind, und in W die, die punktsymmetrisch zum Ursprung sind.

Zeigen sollst Du nun, daß der Schnitt der beiden Unterräume nur aus der Null besteht, daß also die Nullfunktion die einzige ist, die beiden Symmetrien gleichzeitig aufweist.

Beweisen könntest Du das, indem Du annimmst, daß im Schnitt eine von dieser Funktion verschiedene Funktion liegt.


U+W=V beinhaltet zweierlei:

1. [mm] U+W\subseteq [/mm] V, und dies ist wirklich keine berauschende Neuigkeit.

2. V [mm] \subseteq [/mm] U+W, dh. jede Funktion aus V kann man schreiben als Summe einer achsen- und einer punktsymmetrischen.
Hier mußt Du etwas frickeln, mit kleinen Bildchen probieren oder was weiß ich.

Du sagst. sei f [mm] \in [/mm] V, und dann zeigst Du, aus welchen Funktionen man sich die zurechtaddieren kann.

Gruß v. Angela

Bezug
                
Bezug
Vektorraum, Körper: nicht alles beantwortet
Status: (Frage) beantwortet Status 
Datum: 20:27 Fr 07.11.2008
Autor: Bleistiftkauer

Leider wurde nur die 1. aufgabe kommentiert. vielleicht kann noch jemand was zu den anderen sagen. bitte!

Bezug
                        
Bezug
Vektorraum, Körper: -> eigene Threads
Status: (Antwort) fertig Status 
Datum: 02:58 Sa 08.11.2008
Autor: Marcel

Hallo,

> Leider wurde nur die 1. aufgabe kommentiert. vielleicht
> kann noch jemand was zu den anderen sagen. bitte!

Zitat Angela:

> bitte poste die Aufgaben 13 und 14 in jeweils einem eigenen Thread.

Eröffne für diese Aufgaben also bitte zwei neue Threads. Zu 13 (i) gebe ich Dir schonmal vorneweg den Hinweis, Dir Gedanken über lineare Abhängigkeit bzw. Unabhängigkeit zu machen, bzw. Dich an den Satz zu erinnern: Eine Basis ist eine maximale Teilmenge linear unabhängiger Vektoren (bei endlichdimensionalen Vektorräumen über [mm] $\IR$). [/mm]
(Ich sehe z.B. sofort, dass für [mm] $\lambda=14$ [/mm] dieser lineare Span zweidimensional ist (Du musst natürlich nachrechnen, ob das das einzige ist, oder ob es auch noch andere [mm] $\lambda$ [/mm] gibt, so dass die drei Vektoren linear abhängig sind). Er ist übrigens stets mindestens zweidimensional (der erste und dritte Vektor sind offensichtlich linear unabhängig) und maximal dreidimensional (als Unterraum des dreidimensionalen [mm] $\IR^3$), [/mm] es ist also die Frage: Für welche [mm] $\lambda$ [/mm] sind die drei Vektoren linear abhängig, für welche linear unabhängig und dann kannst Du auch schon jeweils eine Basis angeben). Vielleicht hilft das ja schon als Denkanstoss.

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]