www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektorraum prüfen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Vektoren" - Vektorraum prüfen
Vektorraum prüfen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum prüfen: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:33 Di 24.10.2006
Autor: night

Aufgabe
Welche dieser Teilmengen des [mm] R^2 [/mm] ist zusammen mit der für den Verktorraum [mm] R^2 [/mm] definierten Addtion und Multiplikation jeweils ein Vektorraum?
A = { [mm] \vektor{x1 \\ x2} [/mm] | x1 + x2 = 0 }

B = { [mm] \vektor{x1 \\ x2} [/mm] | x1 * x2 = 0 }

Hi,
ich habe diese frage in keinem anderem forum gestellt!

Ich habe leider schwierigkeiten bei dieser aufgabe
ich kenne diese 10 Fälle (zur Prüfung von Vektorräumen)

muss ich diese alle durchgehen?
Wenn ich sie durchgehe finde ich leider nichts woran ich erkennen kann ,dass das die Teilmenge eines Vektorraums ist.

wie gehe ich am besten an die Aufgaben ran?
hoffe ihr könnt mir helfen
vielen dank
lg Daniel

        
Bezug
Vektorraum prüfen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 23:01 Di 24.10.2006
Autor: chrisno

Es soll nicht die Teilmenge eines Vektorraumes sein, sonder n eine der beiden Teilmengen soll ein Vektorraum sein. Dazu musst Du prüfen, ob alle Bedingungen für einen Vektorraum erfüllt sind.
>  
> wie gehe ich am besten an die Aufgaben ran?
>  hoffe ihr könnt mir helfen
>  vielen dank
>  lg Daniel

Bezug
        
Bezug
Vektorraum prüfen: Antwort
Status: (Antwort) fertig Status 
Datum: 01:34 Mi 25.10.2006
Autor: leduart

Hallo Daniel
Nimm dir 2 typische und allgemeine vertreter von A  [mm] \vektor{a\\ -a} ;\vektor{-b \\ b} [/mm]
überprüfe ob die Summe wieder zu A gehört, ob du ein Inversen  zu jedem findest  das auch zu A gehört, und ob alle mit r multiplizierten noch dazugehören. dann ist es ein (Unter)vektorraum
B: typische vertreter [mm] \vektor{a \\ 0}; \vektor{0 \\ b} [/mm] wieder wie in A hat die Summe noch die Eigenschaft x1*x2=0? usw
Gruss leduart.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]