www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektorraum r_{3}
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Vektoren" - Vektorraum r_{3}
Vektorraum r_{3} < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraum r_{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mo 31.03.2008
Autor: idler

Aufgabe
Die drei Vektoren: [mm] \vektor{2 \\ a\\ a-4}, \vektor{3 \\ a\\ a-3 }, \vektor{4 \\ a\\ a+8} [/mm] sollen den Vektorraum [mm] r_{3} [/mm] wählen.

hi,

leider habe ich bei dieser aufgabe gar keine idee für einen ansatz, da ich zu der zeit als wir die definition für einen Vektorraum durchgenommen haben, krank war.

Es wäre sehr nett wenn mir einer eine verständlich definition oder einen ansatz zum lösen der aufgabe geben könnte.  

danke :D  

        
Bezug
Vektorraum r_{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 17:39 Mo 31.03.2008
Autor: MathePower

Hallo idler,

> Die drei Vektoren: [mm]\vektor{2 \\ a\\ a-4}, \vektor{3 \\ a\\ a-3 }, \vektor{4 \\ a\\ a+8}[/mm]
> sollen den Vektorraum [mm]r_{3}[/mm] wählen.
>  hi,
>  
> leider habe ich bei dieser aufgabe gar keine idee für einen
> ansatz, da ich zu der zeit als wir die definition für einen
> Vektorraum durchgenommen haben, krank war.
>  
> Es wäre sehr nett wenn mir einer eine verständlich
> definition oder einen ansatz zum lösen der aufgabe geben
> könnte.  

Die 3 Vektoren [mm]\vektor{2 \\ a\\ a-4}, \vektor{3 \\ a\\ a-3 }, \vektor{4 \\ a\\ a+8}[/mm]  sollen doch bestimmt eine Basis des [mm]\IR^{3}[/mm] bilden.

Für eine Basis gilt:
[mm]\alpha*\pmat{2 \\ a \\ a-4}+\beta*\pmat{3 \\ a \\ a-3}+\gamma*\pmat{4 \\ a \\ a+8}=\pmat{0 \\ 0 \\ 0}[/mm]

mit [mm]\alpha=\beta=\gamma=0[/mm]

Dies ist äquivalent zu folgenden Gleichungen:

[mm]\alpha*2+\beta*3+\gamma*4=0[/mm]
[mm]\alpha*a+\beta*a+\gamma*a=0[/mm]
[mm]\alpha*\left(a-4\right)+\beta*\left(a-3\right)+\gamma*\left(a+8\right)=0[/mm]


Dieses Gleichungssstem hat eine eindeutige Lösung,
wenn die Determinante der Matrix

[mm]\pmat{2 & 3 & 4 \\ a & a & a \\ a-3 & a-4 & a-8}[/mm]

nicht verschwindet, wenn also gilt

[mm]\vmat{2 & 3 & 4 \\ a & a & a \\ a-3 & a-4 & a-8} \not= 0[/mm]

Daraus erhätst Du dann Bedingungen, die das a erfüllen muß,
damit diese 3 Vektoren eine Basis bilden.

>
> danke :D  

Gruß
MathePower

Bezug
                
Bezug
Vektorraum r_{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:14 Mo 31.03.2008
Autor: idler

hi mathpower,

danke schonmal für deine antwort.

Das lösen dieser aufgabe mit diesem matrixsystem sagt mir leider nichts, da wir das noch nicht in der schule hatten.
aber die bedingung für eine basis im vektorraum [mm] \IR^{3} [/mm] hat mir schon etwas geholfen.

kann ich die aufgabe auch auf einem anderen weg lösen ?

Bezug
                        
Bezug
Vektorraum r_{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 18:20 Mo 31.03.2008
Autor: XPatrickX

Hey, du kannst auch einfach das Gleichungssystem
[mm]\alpha*2+\beta*3+\gamma*4=0[/mm]
[mm]\alpha*a+\beta*a+\gamma*a=0[/mm]
[mm]\alpha*\left(a-4\right)+\beta*\left(a-3\right)+\gamma*\left(a+8\right)=0[/mm]
ganz normal lösen und daraus die Bedingungen für a finden.
Denke dran, es muss eine nichttriviale Lösung existieren.

Gruß Patrick

Bezug
                                
Bezug
Vektorraum r_{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:26 Mo 31.03.2008
Autor: idler

hmm,

wie soll ich das gleichungssystem lösen, wenn ich 4 unbekannte und nur 3 gleichungen habe ? =(

soll ich a einfach schon als konstante betrachten?

Bezug
                                        
Bezug
Vektorraum r_{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Mo 31.03.2008
Autor: Tyskie84

Hallo!

> hmm,
>  
> wie soll ich das gleichungssystem lösen, wenn ich 4
> unbekannte und nur 3 gleichungen habe ? =(
>  

Nein du hast nur 3 Unbekannte nämlich [mm] \alpha [/mm] , [mm] \beta [/mm] und [mm] \gamma [/mm] . Das "a" ist nur ein Parameter also handelt es sich nur um eine Zahl die auch so zu behandeln ist. Beachte dass wenn du zb durch a teilst dass du sagen musst dass [mm] a\not=0 [/mm] ist. Dieser Fall ist dann gesondert zu betrachten. :-)

> soll ich a einfach schon als konstante betrachten?

[hut] Gruß

Bezug
        
Bezug
Vektorraum r_{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Mo 31.03.2008
Autor: idler

ok,

ich habe es mal probiert durch zu rechnen, jedoch steige ich da noch nicht so ganz durch.

also:

[mm] 1.2\alpha+3\beta+4\gamma=0 [/mm]
[mm] 2.a\alpha+a\beta+a\gamma=0 [/mm]   => durch a teilen also [mm] a\not=0 [/mm] =>  
[mm] \alpha+\beta+\gamma=0 [/mm]
[mm] 3.a\alpha-4\alpha+a\beta-3\beta+a\gamma+8\gamma=0 [/mm]

dann fasse ich die 1. und die 2. und die 1. und die 3. zusammen damit ich nurnoch 3 gleichungen habe:

[mm] 1.\alpha+2\beta+3\gamma=0 [/mm]
[mm] 2.a\alpha+a\beta+a\gamma-2\alpha+12\gamma=0 [/mm]

nun löse ich die 1. nach [mm] \alpha [/mm] auf und setze sie in die 2. ein :

[mm] \alpha=-2\beta-3\gamma [/mm]

eingesetzt - > [mm] -a\beta+a\gamma+4\beta+18\gamma=0 [/mm]

nur leider weiss ich nicht, wie ich weiter machen muss um eine variable zu erhalten ...




Bezug
                
Bezug
Vektorraum r_{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 19:14 Mo 31.03.2008
Autor: Tyskie84

Hallo!

Das hier ist ein lineares Gleichungssytem und muss auch als System gelöst werden.
[mm] \alpha\cdot{}2+\beta\cdot{}3+\gamma\cdot{}4=0 [/mm]
[mm] \alpha\cdot{}a+\beta\cdot{}a+\gamma\cdot{}a=0 [/mm]
[mm] \alpha\cdot{}\left(a-4\right)+\beta\cdot{}\left(a-3\right)+\gamma\cdot{}\left(a+8\right)=0 [/mm]
Wir wollen hier das [mm] \alpha [/mm] in der 2. Zeile wegebekommen dazu multiplizieren wir die erste Gleichung mit [mm] \cdot(-a) [/mm] und die 2. Gleichung mit 2 und dann addieren wir beide Glehchungen, usw.


Das von dir aufgestellte Gleichungssytem kann gar nicht richtig sein denn wir befinden uns im [mm] \IR^{3} [/mm] sodass wir auch 3 Gleichungen haben. Löse das oben aufgestellte Gleichungssytem so auf wie du es immer machst. Wenn du dann deine Dreiecksform hast dann kannst du ablesen was du für a einsetzen musst damit das System gelöst werden kann. Ok?

[hut] Gruß


Bezug
                        
Bezug
Vektorraum r_{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:34 Mo 31.03.2008
Autor: idler

ok,

wenn ich die 1. gleichung mit -a und die 2. mit 2 multipliziere und sie dann addiere erhalte ich [mm] -a\beta-2a\gamma=0 [/mm]

jedoch weiss ich nicht wie ich gleichungen in einem system löse. es wäre vllt nicht schlecht, wenn mir das einer erklären oder einen link zur erklärung geben könnte.

danke ;D

Bezug
                                
Bezug
Vektorraum r_{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Mo 31.03.2008
Autor: Tyskie84

Hallo!

[guckstduhier]  []Gauß-Algo. und hier noch ein []Beispiel.
Habt ihr in der Schule noch keine Gleichungssysteme gelöst?

[hut] Gruß


Bezug
                                        
Bezug
Vektorraum r_{3}: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:14 Mo 31.03.2008
Autor: idler

ne,

an so etwas hätte ich mich erinnern können.  wir haben die immer mit dem taschenrechner gelöst. man kann jedoch nicht [mm] a\*\alpha [/mm] usw. eingeben oder?

Bezug
                                                
Bezug
Vektorraum r_{3}: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Mo 31.03.2008
Autor: Tyskie84

Hallo!

> ne,
>  
> an so etwas hätte ich mich erinnern können.  wir haben die
> immer mit dem taschenrechner gelöst. man kann jedoch nicht
> [mm]a\*\alpha[/mm] usw. eingeben oder?

Doch. Wenn du einen geeigneten Taschenrechner (CAS) hast dann schon. Du musst auch nicht unbedingt [mm] a\cdot\alpha [/mm] schreiben sondern kannst auch [mm] a\cdot x_{1} [/mm] schreiben. Jedoch bezweifle ich dass ihr das noch nicht gemacht habt wenn du so eine Aufgabe lösen musst. Hier kommst du um das Lösen eines Linearen Gleichungssystem nicht herum. Schau mal vielleicht noch in dein Schulbuch dort sollte sich dieses finden.

[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]