www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraVektorraumhomomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Vektorraumhomomorphismus
Vektorraumhomomorphismus < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorraumhomomorphismus: Beweis
Status: (Frage) beantwortet Status 
Datum: 15:25 So 12.12.2004
Autor: KingMob

Kann mir hierzu jemand bitte einen Anhaltspunkt liefern?
"Es sei V der [mm] \IR [/mm] Vektorraum aller konvergenten reellen Zahlenfolgen. Für alle n [mm] \in \IN [/mm] sei (en) [mm] \in [/mm] V die "n-te Einheitsfolge", d.h. die Folge (en) = (0,0,...,0,1,0,...) mit der 1 an der n-ten Stelle.
Man beweise oder widerlege : ist f : V [mm] \to [/mm] V ein Vektorraumhomomorphismus mit f(en) = en für alle n [mm] \in \IN [/mm] , so ist f = idV die Identität auf V."

        
Bezug
Vektorraumhomomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 21:47 So 12.12.2004
Autor: Hanno

Hallo King!

Du musst bei dieser Aufgabe lediglich zeigen, dass jedes Element in sich selbst überführt wird, wenn dir gegeben ist, dass [mm] $\forall n\in\IN: f(e_n)=e_n$ [/mm] gilt. Denn wenn $f(v)=v$ für alle [mm] $v\in [/mm] V$, dann ist der Homomorphismus f genau die Identität, was du zeigen willst. Also nimmst du dir einen beliebigen Vektor [mm] $v\in [/mm] V$ und versuchst zu zeigen, dass $f(v)=v$ gilt. Nun erinnere dich daran, dass du ja jedes Element als Linearkombination der Basisvektoren darstellen kannst. Die Basis ist in diesem Falle die Menge [mm] $\{e_1,e_2,...\}$ [/mm] und die Linearkombination von v ist [mm] $\summe_{n=1}^{\infty}{v_n\cdot e_n}$ ($v_n$ [/mm] ist die n-te Komponente von v) - warum das so ist, das überlege dir bitte selbst. Es gilt also:
[mm] $f(v)=f\left(\summe_{n=1}^{\infty}{v_n\cdot e_n}\right)$ [/mm]
Das kannst du nun noch vereinfachen, da ja für den Homomorphismus f gilt: $f(v+w)=f(v)+f(w)$ und [mm] $f(\lambda\cdot v)=\lambda\cdot f(v),\quad \lambda\in [/mm] K$.

Schaffst du es nun? Wenn nicht, dann frag' einfach nach!

Liebe Grüße und Viel Erfolg,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]