www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektorrechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Vektoren" - Vektorrechnen
Vektorrechnen < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Do 19.02.2009
Autor: Dinker

Guten Nachmittag

[Dateianhang nicht öffentlich]

Ich bekunde bei dieser Aufgabe gerade gewisse Schwierigkeiten, wäre deshalb sehr dankbar um Hilfe

Aufgabe b
Also ich rechne mal eine Hilfsgerade aus, die rechtwinklig zu [mm] \overrightarrow{AM} [/mm] steht und die Strecke [mm] \overline{AM} [/mm] genau in der mitte schneidet.
Ich habe mich entschieden in Parameterform zu rechnen

Nun rechne ich den Mittelpunkt P von  [mm] \overline{AM} [/mm] aus.
P = (-1/0.5)

Nun berechne ich die Normale auf den Vektor
[mm] \overrightarrow{AM} [/mm]

[mm] \overrightarrow{r_{t}}= \vektor{-1 \\ 0.5} [/mm] + t [mm] \vektor{2 \\ -2} [/mm]

Nun muss ich die Gerade s noch in Parameterform umwandeln
[mm] \overrightarrow{r_{z}}= [/mm] = [mm] \vektor{1 \\ 1.5} [/mm] + z [mm] \vektor{2 \\ 2} [/mm]

Nun gilt: [mm] \overrightarrow{r_{z}}= \overrightarrow{r_{t}} [/mm]

(1) -1 + 2t = 1 + 2z
(2) 0.5 - 2t = 1.5 + 2z

(1) t = 1
(2) -1.5 = 1.5 + 2z
z = -1.5

setz ich nun bei [mm] \overrightarrow{r_{z}} [/mm] ein

Gesuchte Punkt = (-2/-1.5)

Stimmt das so?

---------------------------------------------------------------------------------------

Aufgabe c
Hier bin ich mir absolut nicht sicher, ob ich das richtig mache.
Ich hätte hier mal das Stichwort Skalarprodukt genannt

dort wo sich die beiden Geraden im 90° Winkel schneiden ist mein Punkt S(x/y)


[mm] \overrightarrow{SM} [/mm] * [mm] \overrightarrow{SA} [/mm] = 0

[mm] \vektor{-4 - x\\ 4 - y} [/mm] * [mm] \vektor{2 - x\\ -3 -y} [/mm] = 0

(1) (-4 - x) * (2 - x) + (4 - y) * (-3 -y) = 0

Dann ist der Abstand von M 2

(2) (-4 [mm] -x)^{2} [/mm] + (4 [mm] -y)^{2} [/mm] = 4

(1) [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + 2x -y -20 = 0
(2) [mm] x^{2} [/mm] + [mm] y^{2} [/mm] + 8x -8y + 28 = 0
------------------------------------------------
-6x + 7y - 48 = 0    [mm] \to [/mm] x = [mm] \bruch{7}{6}y [/mm] -8  bsp. bei (1) einsetzen

[mm] \bruch{85}{36} y^{2} [/mm] - [mm] \bruch{52}{3}y [/mm] -36 = 0

[mm] y_{1} [/mm] = 9.03
[mm] y_{2} [/mm] = -1.69

Nun korrespondiert dies überhaupt nicht mit meiner Zeichnung

Besten Dank
Gruss Dinker

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.














Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Vektorrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:07 Do 19.02.2009
Autor: abakus


> Guten Nachmittag
>  
> [Dateianhang nicht öffentlich]
>
> Ich bekunde bei dieser Aufgabe gerade gewisse
> Schwierigkeiten, wäre deshalb sehr dankbar um Hilfe
>  
> Aufgabe b
>  Also ich rechne mal eine Hilfsgerade aus, die rechtwinklig
> zu [mm]\overrightarrow{AM}[/mm] steht und die Strecke [mm]\overline{AM}[/mm]
> genau in der mitte schneidet.
>  Ich habe mich entschieden in Parameterform zu rechnen
>  
> Nun rechne ich den Mittelpunkt P von  [mm]\overline{AM}[/mm] aus.
>  P = (-1/0.5)
>  

Hallo, der Vektor [mm]\overrightarrow{AM}[/mm] selbst ist [mm] \vektor{-6 \\7} [/mm]
Ein dazu senkrechter Vektor ist [mm] \vektor{7 \\6}. [/mm] Du musst durch P eine Gerade mit desem Richtungsvektor legen.
Gruß Abakus

> Nun berechne ich die Normale auf den Vektor
> [mm]\overrightarrow{AM}[/mm]
>  
> [mm]\overrightarrow{r_{t}}= \vektor{-1 \\ 0.5}[/mm] + t [mm]\vektor{2 \\ -2}[/mm]
>  
> Nun muss ich die Gerade s noch in Parameterform umwandeln
>  [mm]\overrightarrow{r_{z}}=[/mm] = [mm]\vektor{1 \\ 1.5}[/mm] + z [mm]\vektor{2 \\ 2}[/mm]
>  
> Nun gilt: [mm]\overrightarrow{r_{z}}= \overrightarrow{r_{t}}[/mm]
>  
> (1) -1 + 2t = 1 + 2z
>  (2) 0.5 - 2t = 1.5 + 2z
>  
> (1) t = 1
>  (2) -1.5 = 1.5 + 2z
>  z = -1.5
>  
> setz ich nun bei [mm]\overrightarrow{r_{z}}[/mm] ein
>  
> Gesuchte Punkt = (-2/-1.5)
>  
> Stimmt das so?

Teste doch einfach, ob die beiden Streckenlänegen dann gleich sind.

>
> ---------------------------------------------------------------------------------------
>  
> Aufgabe c
>  Hier bin ich mir absolut nicht sicher, ob ich das richtig
> mache.
>  Ich hätte hier mal das Stichwort Skalarprodukt genannt
>  
> dort wo sich die beiden Geraden im 90° Winkel schneiden ist
> mein Punkt S(x/y)
>  
>
> [mm]\overrightarrow{SM}[/mm] * [mm]\overrightarrow{SA}[/mm] = 0
>  
> [mm]\vektor{-4 - x\\ 4 - y}[/mm] * [mm]\vektor{2 - x\\ -3 -y}[/mm] = 0
>  
> (1) (-4 - x) * (2 - x) + (4 - y) * (-3 -y) = 0
>
> Dann ist der Abstand von M 2
>  
> (2) (-4 [mm]-x)^{2}[/mm] + (4 [mm]-y)^{2}[/mm] = 4
>  
> (1) [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + 2x -y -20 = 0
>  (2) [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + 8x -8y + 28 = 0
>  ------------------------------------------------
>  -6x + 7y - 48 = 0    [mm]\to[/mm] x = [mm]\bruch{7}{6}y[/mm] -8  bsp. bei
> (1) einsetzen
>  
> [mm]\bruch{85}{36} y^{2}[/mm] - [mm]\bruch{52}{3}y[/mm] -36 = 0
>  
> [mm]y_{1}[/mm] = 9.03
>  [mm]y_{2}[/mm] = -1.69
>  
> Nun korrespondiert dies überhaupt nicht mit meiner
> Zeichnung
>  
> Besten Dank
>  Gruss Dinker
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>
>
>
>
>
>
>
>
>
>
>
>  


Bezug
        
Bezug
Vektorrechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Do 19.02.2009
Autor: weduwe


> Guten Nachmittag
>  
> [Dateianhang nicht öffentlich]
>
> Ich bekunde bei dieser Aufgabe gerade gewisse
> Schwierigkeiten, wäre deshalb sehr dankbar um Hilfe
>  
> Aufgabe b
>  Also ich rechne mal eine Hilfsgerade aus, die rechtwinklig
> zu [mm]\overrightarrow{AM}[/mm] steht und die Strecke [mm]\overline{AM}[/mm]
> genau in der mitte schneidet.
>  Ich habe mich entschieden in Parameterform zu rechnen
>  
> Nun rechne ich den Mittelpunkt P von  [mm]\overline{AM}[/mm] aus.
>  P = (-1/0.5)
>  
> Nun berechne ich die Normale auf den Vektor
> [mm]\overrightarrow{AM}[/mm]
>  
> [mm]\overrightarrow{r_{t}}= \vektor{-1 \\ 0.5}[/mm] + t [mm]\vektor{2 \\ -2}[/mm]
>  
> Nun muss ich die Gerade s noch in Parameterform umwandeln
>  [mm]\overrightarrow{r_{z}}=[/mm] = [mm]\vektor{1 \\ 1.5}[/mm] + z [mm]\vektor{2 \\ 2}[/mm]
>  
> Nun gilt: [mm]\overrightarrow{r_{z}}= \overrightarrow{r_{t}}[/mm]
>  
> (1) -1 + 2t = 1 + 2z
>  (2) 0.5 - 2t = 1.5 + 2z
>  
> (1) t = 1
>  (2) -1.5 = 1.5 + 2z
>  z = -1.5
>  
> setz ich nun bei [mm]\overrightarrow{r_{z}}[/mm] ein
>  
> Gesuchte Punkt = (-2/-1.5)
>  
> Stimmt das so?
>
> ---------------------------------------------------------------------------------------
>  
> Aufgabe c
>  Hier bin ich mir absolut nicht sicher, ob ich das richtig
> mache.
>  Ich hätte hier mal das Stichwort Skalarprodukt genannt
>  
> dort wo sich die beiden Geraden im 90° Winkel schneiden ist
> mein Punkt S(x/y)
>  
>
> [mm]\overrightarrow{SM}[/mm] * [mm]\overrightarrow{SA}[/mm] = 0
>  
> [mm]\vektor{-4 - x\\ 4 - y}[/mm] * [mm]\vektor{2 - x\\ -3 -y}[/mm] = 0
>  
> (1) (-4 - x) * (2 - x) + (4 - y) * (-3 -y) = 0
>
> Dann ist der Abstand von M 2
>  
> (2) (-4 [mm]-x)^{2}[/mm] + (4 [mm]-y)^{2}[/mm] = 4
>  
> (1) [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + 2x -y -20 = 0
>  (2) [mm]x^{2}[/mm] + [mm]y^{2}[/mm] + 8x -8y + 28 = 0
>  ------------------------------------------------
>  -6x + 7y - 48 = 0    [mm]\to[/mm] x = [mm]\bruch{7}{6}y[/mm] -8  bsp. bei
> (1) einsetzen


bis hierher stimmt es

[mm] y_1=4.94 [/mm] und [mm] y_2=2.4 [/mm]




>  
> [mm]\bruch{85}{36} y^{2}[/mm] - [mm]\bruch{52}{3}y[/mm] -36 = 0
>  
> [mm]y_{1}[/mm] = 9.03
>  [mm]y_{2}[/mm] = -1.69
>  
> Nun korrespondiert dies überhaupt nicht mit meiner
> Zeichnung
>  
> Besten Dank
>  Gruss Dinker
>  
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>
>

aufgabe b)die gerade durch den mittelpunkt von AM : [mm] \vec{x}=\vektor{-1\\0.5}+t\cdot\vektor{7\\6} [/mm]

eingesetzt in s liefert [mm]t=1\to S(6/6.5)[/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]