www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenVektorenVektorrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Vektoren" - Vektorrechnung
Vektorrechnung < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung: Flächeninhalt bestimmen
Status: (Frage) beantwortet Status 
Datum: 22:15 Fr 19.06.2015
Autor: Jura86

Aufgabe 1
Begründen Sie:
Für den Flächeninhalt A eines Parallelogramms mit den Seiten u,v ∈ [mm] R^3 [/mm] und dem davon eingeschlossenen Winkel [mm] \alpha [/mm] gilt

i)  A = |u||v| sin [mm] \alpha [/mm] ,

ii) A = | u × v |

Für die erste Identität sollte man die grundlegende Formel “Flächeninhalt = Grundseite · Höhe” benutzen. Beim Nachweis der zweiten Identität hilft die für alle x ∈ R gültige Formel [mm] sin^2 [/mm] x + [mm] cos^2 [/mm] x = 1.


Aufgabe 2
Berechnen Sie den Flächeninhalt des von u = (√2,√2,√2) und
v = (11,−10,11) aufgespannten Parallelogramms.


Zu Aufgabe 1.
Wie kann sowas nachweisen ?
Ich habe folgendes versucht:

für u = (1,2,3) gewählt
für v = ( 4,5,6) gewählt
[mm] \alpha [/mm] = 60° gewählt

in die Formel A =  |u||v| sin [mm] \alpha [/mm] ,
eingesetzt .

A= [mm] \vektor{1 \\ 2\\3 } [/mm] * [mm] \vektor{4 \\ 5\\6} [/mm] * sin(60)

= [mm] \vektor{4 \\ 10\\18} [/mm] * sin (60)

bin ich da auf dem richtigen weg ? Ich befürchte es macht so wenig Sinn ..

ii) hier habe ich das Skalarprodukt gebildet. Das ist denke ich falsch.
    Wie muss ich vorgehen ?

[mm] \vektor{1 \\ 2\\3 } \times \vektor{4 \\ 5\\6} [/mm] = 32



Zu Aufgabe 2.

Ich bin so angefangen :

u = (√2,√2,√2)
v = (11,−10,11)

A =  |u||v| sin [mm] \alpha [/mm]

A= [mm] \vektor{√2 \\√2 \\√2 } \times \vektor{11\\-10\\11} [/mm] * sin [mm] \Alpha [/mm]


wie komme ich zu Lösung in dieser Aufgabe ?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.





        
Bezug
Vektorrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Fr 19.06.2015
Autor: chrisno


> ...  
> Zu Aufgabe 1.
> Wie kann sowas nachweisen ?
>  Ich habe folgendes versucht:
>  
> für u = (1,2,3) gewählt
>  für v = ( 4,5,6) gewählt
>  [mm]\alpha[/mm] = 60° gewählt

Das ist zum Ausprobieren ganz nett, aber taugt nicht für einen Nachweis.

>  
> in die Formel A =  |u||v| sin [mm]\alpha[/mm] , eingesetzt .
>  
> A= [mm]\vektor{1 \\ 2\\3 }[/mm] * [mm]\vektor{4 \\ 5\\6}[/mm] * sin(60)

Da hast Du die Betragsstriche nicht beachtet. [mm] $\left|\vektor{x\\y\\z}\right| [/mm] = [mm] \sqrt{^2+y^2+z^2}$ [/mm]

>  
> = [mm]\vektor{4 \\ 10\\18}[/mm] * sin (60)

und auch das wäre falsch, weil das Ergebnis des Skalarprodukts ein Skalar ist und kein Vektor.

>  
> bin ich da auf dem richtigen weg ? Ich befürchte es macht
> so wenig Sinn ..

Leider hast Du recht. Zeichne ein Parallelogramm auf ein Blatt. Nenne die eine Seite [mm] $\vec{u}$ [/mm] und die andere [mm] $\vec{v}$. [/mm] Wie kannst Du die Länge einer Höhe in diesem Parallelogramm berechnen?

>  
> ii) hier habe ich das Skalarprodukt gebildet. Das ist denke ich falsch.
>      Wie muss ich vorgehen ?
>  
> [mm]\vektor{1 \\ 2\\3 } \times \vektor{4 \\ 5\\6}[/mm] = 32

STOP!!!
Bearbeite keine Aufgabe dieser Art mehr, bevor Du nicht die Symbole und deren Bedeutung kennst.
Du schreibst zuerst Skalarprodukt, dann nimmst Du das Symbol x für das Kreuzprodukt und dann rechnest Du wieder das Skalarprodukt.

Die Verwendung des Skalrprodukts bringt dich nicht weiter. Du musst nun zeigen, dass
|u||v| sin$ [mm] \alpha [/mm] $ | u × v |.
Dazu legst Du am besten u und v in die x-y-Ebene und dann noch u entlang der x-Achse. Dann berechne die x und y-Komponente von u und v und mit diesen das Kreuzprodukt. Der Betrag des Ergebnisvektors ist Dein Ziel.

>  
>
>
> Zu Aufgabe 2.
>  
> Ich bin so angefangen :
>  
> u = (√2,√2,√2)
>  v = (11,−10,11)
>  
> A =  |u||v| sin [mm]\alpha[/mm]
>
> A= [mm]\vektor{√2 \\√2 \\√2 } \times \vektor{11\\-10\\11}[/mm] * sin [mm]\alpha[/mm]

Das ist falsch.

>  
>
> wie komme ich zu Lösung in dieser Aufgabe ?

s.o.: Du musst erst die Bedeutung der Symbole kennen. Vorher hast Du keine Chance.


Bezug
                
Bezug
Vektorrechnung: Pause
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 Sa 20.06.2015
Autor: Jura86

Auch hier, ich werde mich erstmal mit anderen Aufgaben beschäftigen bevor ich hier weitermache.

Komme später drauf zurück.

Bezug
                        
Bezug
Vektorrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:14 Sa 20.06.2015
Autor: chrisno

Das ist gar nicht viel. Dann kannst Du auch in diesem Thread weitermachen.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]