www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungVektorrechnung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra / Vektorrechnung" - Vektorrechnung
Vektorrechnung < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 14:19 Di 14.11.2006
Autor: sush

Aufgabe
Gegeben sind die Punkte eines Quaders mit:
A(1;0;0) B(1;2;0) C(0;2;0) D(0;0;0) E(1;0;1) F(1;2;1)  G(0;2;1) und H(0;0;1) [mm] R_{r}(0;2;r) [/mm]

1.
Durch B, P(0,5;1;1) und [mm] R_{r} [/mm] wird eine Ebene [mm] \varepsilon_{r} [/mm] festgelegt.
Bestimmen Sie für [mm] \varepsilon_{0,5} [/mm] eine parameterfreie Form der Ebenengleichung, den Schnittwinkel mit der x-y-Ebene sowie die Schnittgerade mit der x-y-Ebene!

2.
Begründen Sie, dass die Punkte s(0;4/3;1) und t(1;2/3;1) auf den Kanten [mm] \overline{HG} [/mm] bzw. [mm] \overline{EF} [/mm] liegen!
Zeigen Sie, dass das Viereck [mm] TBR_{0,5}S [/mm] ein Trapez ist!
Berechnen Sie die Höhe des Trapezes!

3.
Berechnen Sie den Flächeninhalt der Schnittfläche von [mm] \varepsilon_{r} [/mm] mit dem Quader!

4.
Die Ebene [mm] \varepsilon_{r} [/mm] mit r=0 teilt den Quader in zwei Teilkörper.
In welchem Verhältnis stehen die Volumina der beiden Teilkörper zueinander?

Ich bräuchte etwas Hilfe mit den Aufgaben. Hab schon probiert...aber es fruchtet alles nicht.

Danke im Voraus für die unterstützung! sush

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Vektorrechnung: Rechenweg?
Status: (Antwort) fertig Status 
Datum: 18:10 Mi 15.11.2006
Autor: informix

Hallo sush und [willkommenmr],

> Gegeben sind die Punkte eines Quaders mit:
> A(1;0;0) B(1;2;0) C(0;2;0) D(0;0;0) E(1;0;1) F(1;2;1)  
> G(0;2;1) und H(0;0;1) [mm]R_{r}(0;2;r)[/mm]
>  
> 1.
>  Durch B, P(0,5;1;1) und [mm]R_{r}[/mm] wird eine Ebene
> [mm]\varepsilon_{r}[/mm] festgelegt.
>  Bestimmen Sie für [mm]\varepsilon_{0,5}[/mm] eine parameterfreie
> Form der Ebenengleichung, den Schnittwinkel mit der
> x-y-Ebene sowie die Schnittgerade mit der x-y-Ebene!
>  
> 2.
>  Begründen Sie, dass die Punkte s(0;4/3;1) und t(1;2/3;1)
> auf den Kanten [mm]\overline{HG}[/mm] bzw. [mm]\overline{EF}[/mm] liegen!
> Zeigen Sie, dass das Viereck [mm]TBR_{0,5}S[/mm] ein Trapez ist!
>  Berechnen Sie die Höhe des Trapezes!
>  
> 3.
> Berechnen Sie den Flächeninhalt der Schnittfläche von
> [mm]\varepsilon_{r}[/mm] mit dem Quader!
>  
> 4.
>  Die Ebene [mm]\varepsilon_{r}[/mm] mit r=0 teilt den Quader in zwei
> Teilkörper.
>  In welchem Verhältnis stehen die Volumina der beiden
> Teilkörper zueinander?
>  Ich bräuchte etwas Hilfe mit den Aufgaben. Hab schon
> probiert...aber es fruchtet alles nicht.
>  
> Danke im Voraus für die unterstützung! sush
>  

Aber ganz ohne deine Eigenleistung bekommst du keine Unterstützung hier! [sorry]

Die Ebenengleichung für [mm] E_r [/mm] wirst du doch aufstellen können, oder?
Was versteht Ihr denn unter "parameterfrei"? Da r=0,5 sein soll, kann damit wohl nur die MBNormalenform der Ebene gemeint sein.

Zeig uns erstmal ein paar Rechenwege und Ergebnisse die erste Aufgabe, dann sehen wir gemeinsam weiter.

Gruß informix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]