www.matheraum.de
Das Matheforum.
Das Matheforum des MatheRaum.

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Mathe
  Status Schulmathe
    Status Primarstufe
    Status Mathe Klassen 5-7
    Status Mathe Klassen 8-10
    Status Oberstufenmathe
    Status Mathe-Wettbewerbe
    Status Sonstiges
  Status Hochschulmathe
    Status Uni-Analysis
    Status Uni-Lin. Algebra
    Status Algebra+Zahlentheo.
    Status Diskrete Mathematik
    Status Fachdidaktik
    Status Finanz+Versicherung
    Status Logik+Mengenlehre
    Status Numerik
    Status Uni-Stochastik
    Status Topologie+Geometrie
    Status Uni-Sonstiges
  Status Mathe-Vorkurse
    Status Organisatorisches
    Status Schule
    Status Universität
  Status Mathe-Software
    Status Derive
    Status DynaGeo
    Status FunkyPlot
    Status GeoGebra
    Status LaTeX
    Status Maple
    Status MathCad
    Status Mathematica
    Status Matlab
    Status Maxima
    Status MuPad
    Status Taschenrechner

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Mathe-Seiten:Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungVektorrechnung/Ebenen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra / Vektorrechnung" - Vektorrechnung/Ebenen
Vektorrechnung/Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Vektorrechnung/Ebenen: Teilaufgabe 1d
Status: (Frage) beantwortet Status 
Datum: 19:00 So 21.08.2005
Autor: Bina02

Hallo erneut! :)

So hier nun die letzte Teilaufgabe, die jedoch auch mein größtes Problem darstellt.

Wie gewohnt erst einmal wieder die Ausgangsaufgabe:

Betrachten sie im [mm] R^3 [/mm] die Punkte Ax( -x;-8;1),  Bx(4;-4;2x) und
C (0;-8;4).
Die Ebene, die durch diese drei Punkte bestimmt wird, nennen wir Ex.



Teilaufgabe d)  Für jedes u [mm] \in \IR [/mm] ist ein Punkt Du (4,-2*u,u-6) gegeben.
Zeigen sie dass alle Punkte Du auf einer Geraden h liegen und geben sie die Gleichung dieser Geraden h an. Welche Beziehung hat h zu E–2 ?


- Leider hänge ich hier, wie gesagt ganz schön fest. Mein einziger Ansatz bzw. Überlegung besteht darin, dass die allgemeine Geradengleichung für h wie folgt lautet:

h: [mm] \vec{x} [/mm] = [mm] \vec{a} [/mm] + s* [mm] \vec{u} [/mm]   und   [mm] \vec{P} [/mm] = (4, -2u,u-6)

, so dass

[mm] \vec{P} [/mm] = [mm] \vec{a} [/mm] + s* [mm] \vec{u} [/mm]


=> (4,-2u,u-6) = (a1,a2,a3) + s* (u1,u2,u3)   =>


I.  4 = a1+ s*u1
II. –2u = a2 + s*u2  
III. u-6 = a3 +s*u3


Was meint ihr dazu? Bin wirklich für jeden Ansatz dankbar.

Viele liebe Grüße und tausend Dank im voraus,

Sabrina  :)


        
Bezug
Vektorrechnung/Ebenen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:25 So 21.08.2005
Autor: djmatey

Abermals hi Bina :-)
Zunächst wollen wir mal zeigen, dass alle Punkte  [mm] D_{u} [/mm] auf einer Geraden liegen:
Setze zwei beliebige u's ein , z.B. 1 und 2 - Du erhältst [mm] D_{1} [/mm] und [mm] D_{2}. [/mm]
Stelle eine Gerade durch diese Punkte auf. Es sollte heraus kommen:
[mm] \vec{x} [/mm] = (4,-2,-5) + r*(0,-2,1)
Nun kannst Du, wie Du auch geschrieben hast, den Punkt [mm] D_{u} [/mm] für x einsetzen, d.h. kontrollieren, ob er auf der Geraden liegt (allgemein für u).
Man erhält eine eindeutige Lösung, nämlich r= u-1, das solltest Du Dir mal überlegen, d.h. für jedes u liegt [mm] D_{u} [/mm] auf der Geraden. Juchuu!
Jetzt die Lage der Geraden zu [mm] E_{-2}: [/mm]
Setze die Geraden - und die Ebenengleichung gleich, um den (eventuell vorhandenen) Schnittpunkt zu finden. Das Gleichungssystem sollte keine eindeutige Lösung haben, d.h. die Gerade liegt in der Ebene.
Ich empfehle Dir, nicht bloß diese Lösung zu nehmen, sondern das nachzurechnen!
Mit den besten Grüßen :-)
djmatey

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.matheforum.net
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]